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Section 1. Overview

In this paper, we develop a method for assessment of
utility functions for multiple criteria. Suppose that there
is a multidimensional outcome variable, which we shall call
8, and a set of acts on which the outcome variable :
depends. In the decision-making procedure, we shall want to
choose among the acts when the value of § is uncertain. In
the Bayesian approach to decision making, the problem has
two components: a probability function over the variable g
for each possible act, in this case a multivariate
distribution; and a utility function over ¢ for each person.

The Bayes rule is to select the act with the highest expec-

ted utility with respect to the probability function.

The forn of the probability function has been
extensively discussed in the literature and does not receive
primary attention in this paper. It is, bhowever, relevant
to some degree in that, because of considerations of sim-
plicity in the computation of expected utilities, the fors

of the probability distribution may constrain the form of




the derived utility function to the <class of conjugate
distributions (Novick and Lindley, 1978). It has also been
shown (Novick, 1980) that in the multiattribute sjituation,
the relationship between the joint utility and the marginal
utilities depends on the (conditional) probability function.
Thus the family of conjugate distributicns is convenient
here as well. With adequate computer-assisted numerical
analysis techniques, however, nonconjugate functional foras

can easily be used.

The form of the utility function also has received much
attention in the 1literature. The primary references are
provided as they are relevant in the presentation of the
background wmaterial in succeeding sections of this chapter

and in succeeding chapters.

The emphasis in this paper is on thbhe form of the
utility function. While there has been much research
concerning the form of such a function, the results have
been insufficiently general for many applications. Much of
the discussion has been limited to a unidimensional
attribute (e.g., Friedman and Savage, 1948; Mosteller and
Nogee, 1951; Pratt, Raiffa, and Schlaiffer, 1965; Keeney and
Raiffa, 1976; Novick and Lindley, 1979). Many of the
applications of decision theory, particularly in education,

hovever, involve paradigass in which the variable of interest

'




1s multidimensional.

The literature that is concerned with wmultiattributed
decision problems is also limited to some degree {(Green and
Wind, 1973; Keeney and Raiffa, 1976). Most of the research
has assumed special formws of the utility function such as an
additive or a multiplicative function of the components, or
other nearly as restrictive assumptions. While these foras
may be appropriate and useful under certain conditions (and
these conditions have been well specified), there are many
sityations in which the necessary ccnditions fail.
Additional research (Fishburn, 1973b) has provided an alter-
native formulation of the multiplicative utility function,
involving sums and products of the marginal functions, yet
still imposes conditions that place undesirable constraints
on the form of the utility function. For example, in Fish-
burn's formulation, conditional wutility functions (those
holding the levels of all but one factor fixed) are strictly

linear.

This paper proposes a procedure for the assessment of a
multiattribute wutility function with a less restrictive
functional form. The proposed procedure has three phases:
the elicitation phase, in which data are collected; the
coherence phase, in which the data and intermediate model

estimates of utility are checked for consistency; and the




modelling phase, in which the parameters of the proposed

model for the utilities are estimated.

The basis of the welicitation ©phase is the work by
Novick and Lindley (1979) on the assessment of utilities for
a single attribute. The work of these authors is also used
in the coherence phase. The coherence fhase incorporates
ideas from the field of scaling, particularly aul-
tidimensional scaling, as well. For the modelling phase,
vork from the field of conjoint measurement, as well as from
multidimensional scaling, is explored. The theories of con-
ditional expected utility are used to create a marginal and
conditional structure for the multiattribute utility func-
tion. Finally, the marginal and conditional wutility func-

tions are modelled by cumulative distribution functions.

Section 2. The Elicitation Phase

Utilities cannot, in general, be assessed directly; ve
perceive them only through their impact on decisions.
Behavioral data, from which the utilities may be inferred,
must be collected. 1In any procedure to determine utilities,
one can distinquish between a data collection phase and an

estimation phase. It is this collection of data that wve

shall call the elicitation phase. Although the <choice of




estimation proccdure is not independent of the choice of the
elicitation procedure, in that the wmethod of estimation
depends on the type of data that is collected, and although
the two phases may be interleaved in an iterative fashion,
the two procedures may be construed as distinct phases of

the overall procedure.

Much of the research in the determination of utilities
does not make the distinction between the elicitation and
estimation ©phases clearly. In fact, scme cf the advocated
procedures are simply called "utility assessment
procedures," combining the data <collection phase and the
parameter estimation phase as one topic (e.g., Novick and
Lindley, 1979 ; Humphreys and Wisuhda, 1979). In a
unidimensional utility assessment procedure, this blurring
of the component phases is not very sericus, because of the
simplicity of the procedure. In a multidimensional wutility
assessment procedure, however, this blurring causes conceg-
tual difficulties because of the greater complexity of the
multidimensional procedure. In addition, the modularization
adds flexibility in the construction <c¢f an appropriate

procedure for a given application.

Even in the unidimensional case one may distinquish

among elicitation techniques, each of which is appropriate

for a given estimation technique, and among estimation tech-




niques, each of which is applicable to the same type of data

and elicitation technigque. The various utility assesspent
procedures of Novick, et alia (Novick and Lindley, 1979;
Novick, Chuang, and DeKeyrel, 1979; Novick, Hamer, Libby,
Chen, and Woodworth, 1980; WNovick, Turner, and Novick,
1981) , the Standard Least Squares procedure, the Regional
Coherence procedure, and the Local <Coherence procedure,

indicate this flexibility.

This paper does not investigate the various elicitation
technigues. The purpose of this paper is to assume the
elicitation techniques as developed by Ncvick, et alia, for
the unidimensional case and extend it to a multidimensianal

setting.

In Chapter II of this paper, the Novick and Lindley
procedure is discussed in detail. The chapter begins with a
brief background discussion of the von Neumann and Mor-
genstern axiomatization of utility (vcn Neumann and Mor-
genstern, 1947) and the notion of expected utility (Savage,
1954) . The assessment procedure of Novick and Lindley is

based on these two concepts.

Following this introduction is a general discussion of
the procedure, called the fixed-state utility assessment.

Briefly, the procedure is based on the concept of greatest

expected utility, that individuals choose an act or outcome,

—




anong several, having the highest expected utility. Thus,
to determine utilities for a variable o an individuwal is
presented with a choice between one outcome, say aj, for
sure and a gaamable involving two other outcomes, say ¢ and

8 The outcomes are selected such that oi is not preferred

K*
to ej vhich is not preferred to 6y -

It can be shown that there exists a probability p such
that the individual will have no preference for either the
for-sure outcome or the gamble over the other. This

Frobability is called the “indifference probability," since

the individual is indifferent between the two choices.

Following this is a general discussicn contrasting the
fixed-state utility assessment procedure tc an alternative
procedure, called fixed-probability utility assessment. 1In
one paradigm of this procedure, the individual is presented
with a choice between a for-sure outcome and a gamble
involving two other outcomes. The probability of the gamble
is fixed, however, as are the two outcomes involved in the
gamble, and the individual is asked to specify the outcome
of the for-sure alternative. This is then «called the
“certainty equivalent,” since it is a certain outcome that
has the same expected utility as the gasmble. A review of
the literature that criticizes both these procedures is also

presented.




Following these discussions is a detailed presentation
of the least-squares estimation procedure advocated by
Novick and Lindley and implemented in the Computer-Assisted
Data Analysis (CADA) Monitor (Isaacs and Novick, 1978;
Novick, Hanmer, Libby, Chen, and Woodworth, 1980).
Criticisms of the 1978 implementation by this author are
presented, which 1led to the enhanced, 1980 implementation.
Additional enhancements are suggested in this chapter as

vell.

Section 3. The Coherence Phase

Just as the procedure to assess utilities way be deconm-
posed into an elicitation phase and an estimation phase, so
may the estimation phase be decomposed into a coberence
phase and a wmodelling phase. 1In the coherence phase, the
data and the intermediate estimates of the utilities from
the wmodelling phase are checked for consistency. The
responses from the user may appear to be reasonable at face
value, but they may imply relationships among the attributes
that are unacceptable. There are two concepts of coherence
that are explored in this paper. One is fros the work of
Novick and Lindley and is discussed in Chapter 1I. The

other is related to the field of scaling. Both concepts of




coherence depend upon the assumptions that the decision

maker is willing to accept about the data.

The Novick-Lindley concept of coherence (Novick and
Lindley, 1979; Novick, Chuang, and LeKeyrel, 1979; Novick,
Turner, and Novick, 1981) involves judgments by the decision
maker. Implications of the data and the selected models are
presented and the decision w@aker must judge whether the
implications are accefptable. If they are not, additional
information must be elicited to resolve the incoherence. 1In
the paradigm of a single decision maker used by Novick and
Lindley, the decicion maker is asked to reconsider some of
the original judgments (i.e., the data). Alternatively,
gathering more data may be more practical, particuvlarly in a
problem involving many sources of the data. This latter
approach is often taken in classical statistics, for exam-

ple, in discriminant function analysis with cross-validation

studies.

In scaling, one is concerned akout coberent judgment as
well. It is assumed that the scale of measurement as obser-
ved may not be the scale of measurement with which decisions
should be made. For example, in our decision, we might like
to assume that equal intervals have equal meaning everywhere
along the scale, We might be unwilling to make this assump-

tion about our elicited data. Therefore, the elicited data
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are transformed so that they may be wanipulated by the
operations of arithmetic in the modelling phase. The level
of measurement of the elicited data may not be strong enough
to allow the usual operations of arithmetic to be meaning-
ful. The theory of measurement has defined four categories:
rominal, ordinal, interval, and ratio (Stevens, 1946;

Coosbs, 1950; Coombs, 1951; Siegel, 1956a; Siegel, 1956b).

If the data collected form a nominal scale of
measurement, i.e., form a classification only, the average
of tvo data values has no sensible interpretation. There is
no sense of order between data values, much less the sense
of distance that is necessary to interprete the idea of an
average. The only relation that is defined for a noainal
scale of measurement is equivalence. Either an object is in

the same equivalence class as another or it is not.

In an ordinal level of measurement, nct only is there a
sense of equivalence, but there is an ordering relation as
vell. The ordering relation may be conceived as "“greater
than", *“preferred to", "lower than", "lighter than", et
cetera. There is no sense of distance. One can say that an
object is “"preferred to" another, but one cannot say by how
much. This level of measurement merely ranks the objects by

some property. Any nmonotone transformation of the scale

provides an gequivalent scale.
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With an interval level of measurement, the zero point
and the wunit of w@easurement are arbitrary, but constant.
Intervals between objects are known and the ratio of any two
intervals does not depend on the unit of measurement or the
zero point. Any linear transformation cf the data results

in an equivalent scale.

In a ratio level of measurement, the scale has all the
progerties of an interval scale plus a defined zero point.
This implies that the ratro of any twc values has a meaning-
ful interpretation; one can judge that one object 1is twice
another. Any transforsation that leaves the ratio of two
values constant defines an equivalent scale. Thus, the unit

of measurement 1S arbitrary.

Many of the advocated wutility assessment procedures
ignore this distinction or omit the scaling entirely. For
example, in the Novick and Lindley fixed-state utility
assessaent procedure, 1t can be shown that the indifference
probabilities are assumed to be from a ratio level, or
scale, of w@easurement (Edwards, 1965). This is due to the
probabilistic interpretation and the estimation procedure.
This 1is a strong assumption to make, fparticularly 1f the
procedure is used by those who are unfamiliar with the gam-
bling context of the Novick and Lindley procedure or the

notion of probability.
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This assumption may be relaxed to some extent. To this
end, two alternatives are available. One 1is to use a
different data collection procedure in which the natural
level of measurement is less restrictive (e.g., interval or
ordinal, instead of ratio). This alternative has been used
with success (Kruskal, 1965; Green and Wind, 1973) . The
other is to assume a less restrictive level of measurement
for the indifference probabilities and to apply a scaling
transformation to obtain the ratio 1level of measureement

required by the estimation procedure.

To provide the necessary background saterial for the
scaling, the literature of nmultidimensional scaling is
revievwed in Chapter III (Eckart and G. Young, 1936; G. Young
and Householder, 1938; Torgerson, 1952; Kruskal, 1964;
Shepard, 1966; Guttman, 1968; Carroll and Chang, 1970; F. W§.
Young, de Leeuw, and Takane, 1976a). The history of wmul-
tidimensional scaling is traced from Bckart and G. Young
through the theories of data and modelling of F. W. Young,

et alia.

Following this, the theory of data of F. W®W. Young is
presented in detail. The theory is based cn tvwo codhcepts:
level of measurement and process of mreasurement. The level
of measurement 1is concerned with comparisons betwveen

categories of objects. The different levels are nominal,
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ordinal, 1interval, and ratio. These 1levels have been
discussed above. The process of measurement is concerned
vith comparisons within categories. The two processes of
measurement are discrete and continucus. In a discrete
process of measurement, all objects in the same category are
assumed to have the same value on the scale. If two objects
have different values, they are in different categories. In
a continuous process of measurement, the categories are
defined by intervals of values, and all objects having

valuyes in a given interval belong to the same category.

The utility assessment procedure of Novick and Lindley
includes some scaling of the elicited data. These authors
argue that egual intervals, in the elicited data, near the
middle of the scale and near the tails of the scale are not
equally meanihgful (Novick and Lindley, 1S79). Therefore,
they suggest using the logodds transformation to balance the
differences. This may be viewed as a fixed, non-parametric

scaling transformation.

The main purpose of reviewing this 1literature 1is to
show the similiarities between the research in scaling and

in utility assessment.
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Section 4. The Modelling Phase

Once we have scaled the data that we bave collected, we
must proceed to the stage of estimating the utilities. We
do this by proposing a model relating the utilities to the
data and estimating the parameters of the model by some
seans such as the method of least squares. Much of the mul-
tidimensional scaling literature is useful in investigating
the modelling phase; thus, this part of the utility assess-

pent procedure is discussed in Chapter II1I as well.

In the literature on utility estimation, however, most
of the wmodelling is discussed in terams of conjoint
measuremsent. Background wmaterial for conjoint ameasurement
is presented in Chapter IV. Two axiomatizations are discus-
sed (Luce and Tukey, 1964; Roskies, 1965) . Several
applications conforming to these axiomatizations are
presented (Fishburn undated; Keeney and Raiffa, 1976;
Kruskal, 1965; Green and Wind, 1973; Humphreys and Wisuhda,
1979). These applications depend upon certain independence

conditions that simplify the form of the utility function.

One of these conditions is called "additive indefen-
dence” (Keeney and Raiffa, 1976). This condition holds if
and only if preferences amwong gamktles depend only on the

marginal probability distributions of the gambles. When the
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condition holds, the utility function is additive in the

components.

Another of these conditions is call "mutual utility
independence™ (Keeney and Raiffa, 1976). Under this con-
dition, preferences among gambles involving each attribute
do not depend on the levels of the other attributes. If
this condition is satisfied, then the utility function is
multilinear; i.e., it is the sum of wuniattribute utility
functions and cross-products of uniattribute utility func-

tions.

The points to be made here are that the conditions may
not be satisfied and that the resulting functional
limitations may not be appropriate. ®e must be careful to
investigate the validity of the conditions and the meaning-
fulness of the functional forms. It is 1likely that an
additive utility function 1is not reasonable in wmost
situations. A wmultilinear wutility function is also
unreasonable in many situations. In both cases, for exam-
ple, the «conditional wutility functions, those of one
attribute for fixed values of the others, are linear. While
these simplifications are useful under the correct con-
ditions, they are not generally applicable. Methods for
estimating more general multiattribute wutility functions

nust be developed.

A ik b ma e
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Tvo general theories of conjoint w@easurement are
presented (Tversky, 1967a; P. W®W. Ycung, 1972). These two
theories of polynomial conjoint measurement provide the
theoretical foundation for a more general approach to the
estimation of wmultiattribute utility functions. The
approach taken in Chapter V of this parer is based on the
operational approach of F. W. Young, et alia (de Leeuw, F.
W. Young, and Takane, 1976; F. W. Young, de Leeuw, and
Takane, 1976a; Takane, F. W. Yocung, and de Leeuw, 1977; F.

W. Young, Takane, and de Leeuw, 1978).

Section 5. An Intermediate Proposal

In Chapter V¥V, the various pieces are put together to
form one possible procedure for wmultiattribute wutility
assessment using theories from conjoint measurement and mul-
tidimensional scaling. The indifference probability assess-
ment procedure is expanded to involve gambles among several
attributes. The scaling transformations are developed for
several assumed levels of measurement. A polynomial model
is proposed that should be more flexible than the additive

or the multiplicative model.

Briefly, the multiattribute otility assessment

procedure consists of the three ©phases outlined in the

A maliodie
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previous three sections: an elicitation fhase; a coherence

phase; and a modelling phase.

In the elicitation phase, choices Letween one mpul-
tidimensional outcome for sure and a gamble involving two
other multidimensional outcomes are presented. These
choices are used to order the outcomes as well as to elicit
the indifference probabilities for the choices. Note that
if one <choice 1is selected, either the fcr-sure outcome or
the gamble, regardless of the probatility of the gamble
(i.e., even when the indifference probability is 0 or 1),
then we knov that the utility of the for-sure outcome is not
between the utilities of the outcomes in the gamble. We can

then reorder the outcomes and present a new choice.

The number of possible <chcices 1is gquite large. If
there are d dimensions and Ni is the number cf points selec-
ted along the ith dimension, then there are (N, %... %N,
choose 3) possible choices. For example, if there are three
dimensions and seven points along e€ach, then there are
6,666,891 possible choices. By compariscn, if there 1s only

one dimension and seven points along it, there are only 35

possible choices.

It is not practical to obtain indifference
probabilities for every possible choice, nor is it neces-

sary. If there are three dimensions and seven points along
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each, then there are twenty-one marginal utility parameters,
ignoring for the moment the scaling parameters. Recalling
that two parameters are fixed, at 0 and 1, for each wutility
marginal function along its dimension, we have only fifteen

parameters to estimate.

We could accomplish the same structuring using the
usual wunidiwmensional wutility assessment procedures. If we
agjain assume that we are interested in a situation with
three dimensions and seven outcomes along each dimension, ve
have 341 utility parameters to estimate (7*7+*7-2=341). This
approach makes no assumptions about the structure of the
model. The savings in parameter estimation using the

polynomial model advocated in this chapter are considerable.

The selection of the choices must be made carefully.
One could randomly select multidimensional outcomes for the
choices, but this method would likely be confusing for the
user. Perhaps, the choices could be selected in a pattern,
conditional on certain "lines" through the space of the
outcomes. For example, one set of choices could involve
points along a single dimension, conditional on fixed values
for the other dimensions. Another set of choices could
involve points along a "diagonal™ through ¢two or more
dimensions of outcomes, holding the values of other

dimensions fixed.

-

i e e e it e amen e
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The second phase, <coherence, and the third phase,

modelling, would be iterative. An initial scaling trans-

formation, an identity transformation, would be applied to
% the elicited data. The parameters cf the model would then
% be estimated from this transformed data. Using the
estimated parameters of the model, predicted data would be
calculated. A new scaling transformation would ¢then tGte
estimated wusing the predicted data and the original data.
This iteration would continue until ceonvergence criteria are

satisfied.

Within the third phase, there might be some
subiteration. The proposed model wmight be such that the
parameters cannot be estimated simultaneocusly with ease. F.
W. Young, et alia, have shown that the method of alternat-
ing least squares works well. With this method, blocks of
parameters are estimated conditicnally on fixed values fcr
the other parameters. These estimates are then taken to be

fixed and another block of parameters is estimated.

The model proposed in this chapter 1is a fourth-order
polynomial. The terms could be determined dynamically: if
a term accounts for at least a certain percentage of the
total variation in the data, then it is included in the

model. Note that the parameters of the model are not only

the coefficients of the terms in the model. Since this is a
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fixed-point procedure, the utilities along each of the
dimensions are parameters as well. Any interpolation of
utilities between specified outcome points is risky, but
useful. To facilitate this interpolation, transformations
from the attribute space to the marginal utility spaces are

also estimated by fourth-order polynomials.

It should also be noted that the above presentation has
tacitly implied that the number of dimensicns for wutilities
is the same as the number of dimensions for attributes.
This is not a necessary restriction. Multidimensional scal-
ing is commonly used as a dimension-reducing technigue. It
also commonly assumes that the dimensicn of the object space
is the number of outcomes. We could apply the techniques
presented in this paper to a set of outcomes that appear to
be unidimensional on the surface, but are composed of
several underlying dimensions. The procedure could then be

used to estimate utilities on these underlying dimensions.

The procedure could also be used in reverse. Suppose
that we measure outcomes along several dimensions, but that
some of the dimensions are redundant. We could use the
techniques presented here to identify the utility space of

lower dimension.
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Section 6. <Conditional Expected Utility Assessment

The procedure developed in Chapter V has soge
deficiencies in conceptualization and in parsimony. Thus
the theories of conditional expected utility (Luce and
Krantz, 1971; Fishburn, 1973¢) are explored as an alter-
native structure for the multiattribute utility function in
Chapter VI. The axiom systeas of Luce and Krantz (1971) and
of Pishburn (1973c) are briefly presented to provide the
theoretical background for the proposed assessment

procedure.

Drawing on the two axiom systems, the concepts of a
marginal utility function and a conditional utility functicn
are developed. The marginal utility function is defined as
the conditional expectation of the wmultiattribute utility
function. The conditional utility functicn is defined as a
rescaled utility function over a subset of the space of
interest. It is shown that the conditional utility function
plays an integral part in the assessment procedure of Novick

and Lindley (1979).
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Section 7. Multiattribute Utility Assessament

Based on the theoretical background of Chapter VI, an
assessment procedure for the w®warginal and conditional
utility functions is adopted from that of Novick and Lind-
ley. Models for the utility functions are «chosen to be
cuaulative distribution functions, as suggested by Novick
and Lindley (1978). By selecting convenient cumulative
distribution functions, such that the w@marginal and con-
ditional distributions are nicely related to the parent
distribution, the parameters of the overall multjattribute
(parent) utility function may be estimated. The normal
distribution and the Dirichlet distribution are convenient
candidates. A new distribution, developed for this applica-
tion and called the multivariate generalized beta

distribution, is also used.

The procedure will be implemented into the Computer-
Assisted Data Analysis (CADA) Monitor (Novick, Hamer, Libby,
Chen, and Woodworth, 1980). It wvwill be 1limited to two-
dimensional problems because of computer memory restric-
tions., Por the same reason, the scaling transformations of
the coherence phase will be limited to fixed, non-parametric
forms. Three forms will be available: an identity trans-
formation, so that the parameters of the utility wmodel are

estimated in the metric of the indifference protabilities;

B e IR S e R VP |
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the logodds transformation, as used by Novick and Lindley
(1979y and currently implemented in the CADA Monitor; and
the arcsine-square-root transformation, because of its
accepted use in educational and psychological research

{Novick and Jackson, 1974).

Y- |
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Section 1. Introduction

In this paper, vwe are primarily concerned with the
assessment of utilities for an individual. The data consist
of repeated measures elicited from that inhividual. By
contrast, if we are estimating utilities for a group, then
the source of error of primary concern 1is across
individuals. In the former case, Wwe want to elicit a 1large
enough sample from the individual =so that the errors of
measurement are reduced. In the latter case, we generally
vant to sample sufficiently many individuals to accomplish
the same reduction in the error of wmeasurement. In both
cases, we want a large enough sample of measurements to

achieve stability of the estimates.

When we are assessing utilities for a group, we use the
frequency of preference of one object over another to
measure the relationship of the two objects (Shepard, Rom-
ney, and Nerlove, 1972; Green and Wind, 1973) We use the
relative frequency of preferences both to determine the

ordinal characteristics (i.e., which has g¢greater wutility)
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and to scale the objects in terms of distances (i.e., how
such greater utility the one has compared to the other). 1If
one object is preferred over another by a large majority of

the sample and a third over a fourth by a small majority of

the sample, one would say that the two objects of the first
pair were more *"distant% from each other than the two
objects of the second pair. The strength of the interval
relationship 1is deterained by the proportion of the sample

that prefers the one object over the other.

When we are assessing utilities for individuals, we do
not have the sawme type of information from which to draw "
inferences. HWe have a sample of one, using the same
context. We must use the sample of respcnses from that one
individual to estimate the utilities, but the responses aust
be of a different nature than a simple statement of
preference Dbetween two objects. Such an elicitation would
be rather transparent, since the individual would 1likely
remember the preference stated for previous presentations of
the pair of objects, and thus would not provide as much
information to us for our efforts as it might appear. The
strongest statesent we could make froam such evidence would
concern only the ordinal characteristics of the utilities,

and that would not be very strongly suppcrted. j

In order to obtain more information, there are several
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feasible alternatives. One alternative is to present twvwo
pairs of objects and to elicit which pair is thought to be

further apart (Suppes and W®Rinet, 1955; Mayekawa, 1980).

This coamparison onh an interval scale is appealing as we are

are attempting to assess interval-scaled utilities.

Another alternative is to elicit a statement about the
magnitude of the interval between two objects. This
procedure might be difficult, and thus unreliable, because
of the lack of a standard for comparison. To structure this
procedure a bit, vwe might consider three objects, instead of
two, and ask how much further the third is from the first '

than the second is from the first.

This latter procedure captures in essence one
interpretation of an elicitation procedure based on the
theory of expected utilities (von Neumann and Morgenstern,
1947; Savage, 1954) . The next section presents the
axiomatizations of utility by von Neumann and Morgenstern
and by Savage. In the third secticn, two <classes of '
procedures based on the theory of expected utility are
investigated: fixed-probability utility assessment and
fixed-state utility assessment. In the fcurth section of

the chapter, the fixed-state procedure advocated by Novick

and Lindley (1979) is discussed in detail. In the final

section, some enhancements for the Novick-Lindley procedure
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are presented.

Section 2. Expected Utility Axiomatizations

In this section, two axiomatizaticns of expected
utility are presented. The axioms of von Neumann and Mor-
genstern (1947) are listed in Table II.2.1. Those of Savage
{1954) are listed in Table II.2.2. These axiomatizations
are presented here for completeness and are not discussed in

detail.

The axiomatization of von Neumann and Morgenstern was
the first concerted axiom system for the concept of expected
utility. The concepts may be traced kack to the works of
Ramsey (1960) and de Finetti (1974). The axiom system of
Savage generalizes the system of von Neumann and Morgenstern

somewhat and presents it in a more rigorcus fashion.

Section 3. Expected-Utility Assesssent Procedures

In this section we present two classes of procedures
based on the theory of expected utility. The procedures 1in
one class are called fixed-state procedures, and those in

the other class are called fixed-probaltility procedures.
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Table II1.2.1

Axiomatization of Utility

(von Neumann and Morgenstern 1947)

We consider a system U of utilities u, v, v, .... In U a
relation is given, u > v, and for any nusber a, (0<a<?}, an

operation

au + (1-a)v = w.

These concepts satisfy the following axioms:

A u > v is a complete ordering of U.
A:a For any two u, v, one and only one of the three follow-

ing relations holds:

u =v, u>v, u<yvw,

A:b u > v, v > v imply u > w.

B ordering and combining

B:a u < v implies that u < au + (1-a)v

B:b u > v implies that u > au ¢+ (1-a)v

B:c u < w < v implies the existence of an a with

au ¢+ (1-a)v < w.




29

Table 1I1.2.1

(continued)

u > w > v implies the existence of an a with

au + (1-a)v > w.

Algebra of combining

au + {1-a)v = (1-a)v + au

a(bu ¢« (1-b)v) ¢+ (1-a)v = cu + (1-c)v, where c = ab.

iecinduli
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Table II.2.2

Axiomatization of Utility

{(Savage 1954)

In the following postulates (P1-P6), let S be the
universal event, a set of states containing all the states
of the world, with generic element s; let A and B be events,
subsets of S; let f, f*, g, g', denote consequences; let {,

4% o, gq' Dbe acts, functions that attach a specific

consequence f(s), f'(s), g(s), g'(s), resfpectively, to each
state of the vorld s; and let AA' 58, SIS denote acts

conditioned on the event A, or B, obtaining.

P1 The relation <= is a simple ordering among acts.

P2 If 4, g, and 4', g' are such that:
1. in "B, 4 agrees withg , and ;' agrees with a',
2. in B, § agrees with (', and g agrees with ',
3. §<= g

then {' <= ¢'

A
A

P3 If § = g, 4 g!', and B is not null; then § <=

given B, if and only if g <= g°'.

4
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Pe

(continued)

1f £, £+, g, g'; A, B;

s

6A' :('B' :-‘A

1. fr <= ¢, g' <= g;
2a. f = £, = g,
a A (s) 9A (s) 9

f = f1*, = ',
A (s) QA (s) g
2b. f = f, = g,
B (s) QB {s) g
= ’ = ]
fL‘(S) fr, gB (s) 9.
. 1 <= ! 3
3 0:\ "B
then ; <= ; .
A B

N

are such that:

for s in &
for s not in A;
for s in B

for s not in B;

There is at least one pair of consequences f, f' such

that f' < f.
If W< i, and f is any consequence;
partition of S such that, if . or

cne element of the partition as tco

then there exists a
. 1s modified on any

take the value f at

every s there, the other values teing undisturbed, then

the modified . remains less than /., or , remains less

than the modified [, as the case may regquire.

’
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These two classes have been well researched and «criticized
(Priedman and Savage, 1948; Mosteller and Nogee, 1951;
Coombs, 1975; Kahnemann and Tversky, 1979; Ncvick and Lind-
ley, 1979; Novick, Turner, and VNowvick, 1981). The
criticisms are discussed here in order to justify the selec-
tion of the fixed-state procedure of Novick and Lindley as

the method for elicitation in this paper.

The two classes of procedures are based on the theory
of expected utility. Both assume that there are three
distinct outcomes or objects, which are ordered according to
perceived value or utility. Tvo alternatives are presented:
the object of middle value may be selected for sure, or a
gamble may be selected involving the other two objects. If
the for-sure alternative were selected, then the object of
wmiddle value would be obtained unconditionally, in this
hypothetical <choice. If the gawmble were selected, the
object of higher utility would be obtained with probability
p and the object with lower utility would be obtained with
probability 1-p. For certain objects and probabilities, the

expected utilities of the two alternatives would be equal.

In the fixed-probability procedures, the value of the
probability p 1is fixed, and the value cf cne of the three

objects is varied until the utility of the for-sure alter-

native 1is egqual to the expected utilit&wof the gamble. 1In

Y
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some cases it 1s the object of middle value, the for-sure
object, that 1is wvaried; 1in some cases 1t is the higher-
valued object that 1is varied. The middle-valued object 1is

called the ®"certainty eguivalent” of the ganmtble.

In the fixed-state procedures, the three object are
fixed and the value of the probability that makes the expec-
ted utilities of the for-sure alternative and the gamble
alternative equal is ascertained. Thils probability is cal-
led the "indifference probability," as oune would Le
indifferent to a choice between the for-sure alternative and

the gamble with such a probability.

The two <classes of procedures wmay Lte compared on
several levels. oOne is concerned with ccherence in judgment
(Novick and Lindley, 1979). If we elicit subjective Jjudg-
ments on related guantities, ve want them to agree. In
eliciting judgments in the assessment of utilities, we want
to elicit more judgments than are necessary to estimate the
unknown utility parameters. Thus, the assessee has an

opportunity to see the effects of incoherent judgment.

The ease of coherence checking 1s not equal between the
fixed-state and the fixed-probability prccedures (Novick and
Lindley, 1979). For example, 1in the fixed-probability
procedure, fixing the prokability at one half, we might find

the certainty equivalent of an even-o0dds ygamble between the
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vorst state, say Y, , and the best state, say vy - Calling
this state ¢ o and assuming the utility of g to be 0 and
the wutility of Gl to be 1 (i.e., u(60)=0 and u(uy)=1), ve
vould set u(e.5)=.5. We could then &elicit the <certainty
equivalents for even-odds gambles bhetween %0 and ¢ and
between © . and 9,. As these certainty equivalents would
have utilities .25 and .75, respectively, we might call then
% »5 and 0.75. If we were to then elicit the certainty
equivalent for an even-odds gamble bhetween & and 6_75, it

.25

would be rather obvious that it should be Hence, wWe

Vs
would not be getting observations that were independent

enough to check for coherence.

The fixed-state procedures seem to not be affected as
much by this difficulty in coherence checking. In the next
section, several algorithms that have been developed for

this purpose are discussed.

One «criticism that appears to affect procedures fronm
both «classes stems from an “anchoring and adjustment™
phenomenon (Tversky and Kahnemann, 1974) . It is
hypothesized that the first response acts as an "anchor" and
subsequent responses are adjustments from the initial
resgonse. In addition, it appears that in both the fixed-

state and the fixed-probability procedures, estimates of the

extremes tend to be conservative. More research 14 being
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conducted in this area (Novick, Turner, and Novick, 1981).

Section 4. The MNovick and Lindley Procedure

The procedure advocated by Novick and Lindley (1979) 1is
a fixed-state procedure. In this section we present the
procedure in detail. The implementation of the procedure
{Isaacs and Novick, 1978) and its subsequent enhancement
(Novick, Hamer, Libby, Chen, and Woodworth, 1980) are also
discussed. In the following section, additional
enhancements are suyggested. Although wmuch of the discussion
of the implementation of the procedure 1is «concerned with
modelling and estimation, rather than elicitatiom, it is

included here for reasons of continuity and completeness.

The Novick and Lindley fixed-state wutility assessment
procedure is based on the theory of expected utility in the
following way. It assumes that we have a set _ of n+1l
states in which we are interested; we will name these states
“ge Y1 ¢ ce-sy - It assumes that we can order these states
such that ¢, <p v, <p ... <p ", where "<p" is interpreted
as "less preferred than." Note that the fpreference ordering
1s dassumed to be strict; it 1s not perwmitted that two states

are equally preferred, or that one 1is indifferent in a

choice between two states. (This 4assumgtion 1 for
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explanatory convenience. Any implementation of the
procedure should be able to determine when two states are
preferentially equivalent and to adjust the model accor-
dingly. This topic is discussed in more detail in Chapter
VIX when the procedure being advocated in this paper is

presented.)

We will have occasion to discuss varicus states selec-

ted from the set ¢g. We will use Ujr 8 and 6, to denote

jl
any three states of the set such that &, <p oj <Py He
will use 6j+l to mean the state that is fpreferred to Vj but
is preferred to no other state that is preferred over Yy

Similarly, we use oj—l to denote the state to which @j is
preferred but is preferred over all other states over which

”j is also preferred.

The Novick-Lindley procedufé presents a sequence of
choices involving three states,ei 'Oj ., and Bk. In each of
these hypothetical situations, the decision maker is given a
choice between obtaining state Gj for sure or participating
in a gamble where Uk would be obtained with probability p
and vy would be obtained with probability 1-p. The purpose
of the procedure is to determine a value for p so that the

choice 1is indifferent to the decision maker. It is then

assumed that the expected utilities of the two alternatives

are equal. In other words, the equation
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(II.“.']) U(Oj) =P U(Ok) + (l_p) U(Ui)

is true, where u({.) is the utility transformation. Since
the indifference probability p varies depending on the
situation, i.e., on the choice of i, j, and k, we will refer

to a specific value as pijk‘

It is this utility transformation that we are attempt-
ing to estimate. There are, however, some assumptions that
we make about its form. First, it is a discrete .trans-
formation. ¥e are not trying to find a parametric fit for
the set of all possible states (our set ¢ is a subset of
this set). We are merely attempting to find a value to
associate with each element v; in the set :. Second, we
associate a utility of 0O with the least preferred state in
and a utility of 1 with the most preferred state. If we are
aiming for an interval level of measurement with our utility
transformation, this second assumption co¢nly restricts us
enough to make the necessary estimates, because an interval
level of measurement is unique only up to a 1linear trans-

formation.

Since equation (IX.4.1) involves three utilities and
the second assumption srecifies two utilities in the set to
have fixed values, we can solve the system of equations in

the form of eqguation (II.4.1) if we can arrange each equa-

tion so that it involves two utilities that we know and only
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one that wve do not know. To accomplish this, it is con-
venient tc select the states 0;, 64« and 8, so that they are
tadjacent,' i.e., we select ej~l' ej, and ej+l . Equation

(II.4.1) then becosmes
(II.Q'Z) \l(ej) = p u<e]+l) + (1‘P) u(ej_l).

Since the indifference probability p here depends on the
selection of j only, vwe will refer to a specific value as
pj. #e can now rearrange equation (II.4.2) so that it

involves differences between the utilities of adjacent

states

(I1.4.3) pj u(oj) + (l-pj) u(ej) = pj u(ej+l) + (l—pj) u(uj_l)
.u. . . - . = - . . - .

(II.4.4) pj[“(93+1) u(e;)] (1-py) {uley) ulog_ )]

l1-p.
- - (=3 -
(IX.4.5) “(0j+1) uloy) ( (uey) - uloy_y)I

If we define fj = (1-pj)/pj, then equation (II.4.5) becomes
U, . - ) = £ ) - . .
(I1.4.6) uloj,,) uley) jlutey) - uley y)]

substituting equation (II.4.6) for j=3j'-%1 into the equation

for j=j' and repeating the substituticn, we arrive at

-5
(1I.4.7) u(0j+1) - u(ej) = (iilfi u(el)

since ve have constrained u(eo) = 0. If we then sunm
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equations (II.4.7) over j from O to k (and defining fo = 1),

ve get

(II.‘J.S) u(0k+l) :[]

If k+1=n then

—n-1 3
(II-“.g) u(o ) = L ¥ it
n .

j=0 1=

o
J

from known guantities. Knowing “(”l)' we can calculate the

Since we have constrained u(b = 1, Wwe can calculate u(‘l)
utility of the other states successively using equation

(IT.4.95).

This development does not use the ccncept of coherence
checking. We are assuming only as much information as is
needed to wuniquely determine the autilities. To check
coherence, we need ¢to collect more infermation on the
relationships among the utilities, i.e., we need to elicit
indifference probabilities for wmore gambles. There are
three methods that have been developed to check for
coherence: local-coherence assesssment, regional-coherence
assessment, and least-squares assessment (Isaacs and Novick,
1978; Novick and Lindley, 1979; Novick, DeKeyrel, and
Chuang, 1979; WNovick, Hamer, Libby, Chen, and Woodworth,

1980; Novick, Turner, and Novick, 1981).

In the regional-coherence assessment procedure, adjust-
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ment is made for pairs of situations. Indifference
probabilities are elicited for twc situations in each of
vhich a hypothetical choice between receiving a given state
for sure and participating in a gamble is offered. Only
four states are used for each pair of situations; the two
situations have two states 1in common. The indifference
probabilities for these tvo situations imply fixed
indifference probabilities for the other two possible
situations involving three out of the same four states
{there are four unique combinations of three states chosen
from four states when order is not a consideration). The
indifference probabilities for all four situations are
adjusted until they are acceptable; then another pair of
situations is presented. When enough information has been
collected to uniquely determine the utilities, the procedure

stops.

In the local-coherence assessament procedure, adjustment
is made for each situation in which a choice is made between
a for-sure state and a gamble involving two other states.
An indifference probability is elicited. From this
information, two gambles are constructed, each involving two
of the three states, such that a choice between the two gam-
bles should be indifferent. If one of the gambles 1is
preferred, the probability of one of the gambles is

modified, thus changing the indifference probability in the
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original <choice, so that neither gamble is preferred over
the other. Once all the probabilities are acceptable,
another set of three states is presented in the same way.
When enough sets have been presented so that all the

utilities can be uniquely determined, the jiteration stops.

The least-squares assessment procedure allows adjust-
ment only after all situations have been [presented. For
this reason, the procedure might be <called a glcbal-
coherence assessment procedure as well. Indifference
probabilities are elicited for each situation presented, as
in the other assessment procedures, but more situations are
presented than are necessary to uniquely determine the
utilities. Therefore, it is unlikely that there is a solu-

tion that exactly fits all of the equations in expected

utility. To estimate the utilities, a least-squares solu-

tion is calculated.

In the 1least-squares methodology, we assume that our
observations, in this case the indifference probabilities

p contain some (unknown) amount of error, which may be

jl
random or systematic. Thus, the estimated model 1s not
expected to fit the observations exactly. The parameters in
the wmodel are estimated to minimize the sguared deviations

of the observations from the corresponding values projected

by the model.

\ —
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Because of the importance to the estimation of the
model, it is necessary to consider carefully the wmetric in
which to make the comparison betvween the observations and
the estimated model. One possible metric is that of the
indifference ©probabilities themselves. Equation (II.u4.1)
can be rearranged to give

u{n.) - u(oi)

(II.“-10) pl]k = —U(dk-) _ \I_(T;)

from which we <can obtain estimates of the 1indifference

probabilities conditional on the estimates of the utilities L
) u(s.) - u(s,)
= N
(II.4.11) Pijk ale) - ae))

One «could, then, estimate the utilities to minimize the sunm

of squared differences between p, ., and bijk'

Novick and Lindley (1979) have argued that the
precision of the logodds of the indifference probabilities

is the crucial factor in the analysis. Note that equation

(II.4.1) can also be rearranged to prcduce

u(n.) = u(oi)

k) - U("sj)

p. .

(11.4.12) ]_—le—z :
il S ule
17k

and the corresponding estimates ‘
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(I1.4.13) _851&.

1-p

13k

The least-squares solution advccated by Novick and Lindley

is, thus, the set of utilities that miniwizes the equatioun

- D, . \ (0 - us )y
. 3 l]k t ; 100
(II-“.1“) L lij(” — - loy <————i-———ﬁ_—. |

i,3.k 1=P; 5k Tolut "j/
Research has shown (Mayekawa, 1981) that use of the 1logodds
metric does not appreciably improve the estimation over the
use of the metric of the indifference prcbabilities or the

arcsine metric.

Section 5. Enhancements to the Procedure

There are two enhancements noted here for the original
implementation of the Novick and Lindley 1least-squares
fixed-state utility assessment procedure {(Isaacs and Novick,
1978). Although they are more relevant to the implementa-
tion of the procedure being advocated in this paper, they

are mentioned here for continuity.

The first enhancement is concerned with the numerical
method used in the nonlinear estimation. The method 1is a

Newton-Raphson method (Dahlquist, Bjork, and Anderson, 1974;

Kennedy and Gentle, 1980) such that
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(I1.5.1) u - u' = Hg

where u is a previous estimate of the utilities, u' 1s the
new estimate of the wutilities, g 1is a vector of first‘
derivatives of the function to be pminimized (equation’
IT.4.14), and H is the 1inverse of the matrix of second
derivatives (the Hessian matrix) of the function to te
minimized. A1l derivatives are with resrect to the utility
parameters. Table II.5.1 presents these first and second

derivatives.

The original implementation of the Novick-Lindley
procedure did not use the full expressions for the calcula-
tion of the Hessian matrix of second derivatives. In each
of the sums for the second derivatives in Table II.5.1, c¢cnly
the first term within the brackets was used. The justificai-
tion was based on the expectation that the difference
between the tws log terms would be sufficiently <close to
zero to make its contribution to the second term within the

brackets negligible.

The first enhancement 1is to use the full expression for
the second derivatives. It appears that this enhancement
lessens the 1likelihood of obtaining utility estimates that
are not monotonic. (The constraints imposed by the model
theoretically juarantee that the utility estimates will be

sonotonic. With computatiounal inaccuracies due to the




r“- U — A S—

15
Table 11.5.1
Least Squares Derivatives
WomUle - 2 9 .
F (u) . 1 . M \ Dk
{au) = . Y., —loy <=y , = LUy e T
- < 1 ) —U “1gk 1-0.
1<k P13k L J R
LT 7 N
3 N i 1 / 1
5 “(u) = 21“ K }’I y 7L T G o-a
’ = ) ;F. Loy, T - ,
s - S
- T .
~“ o }( X4 .- . : ‘3 - - - = 1 - -
1 }So KT K Uy, ~ud o Ta (OR
- K 3 } b ;
uoo-al
to : 1
1o ks vy, .. —loa = — it
< 1K U, —uag u, =1
Al
“ N <
-
-
rool
T -u
1
J
"

b - -~—- -
LY Lot 1= U, -u
j L K ‘
. N \
. 4
- - R
N [N K-t O e W, — b7




46

limited precision of the computing environment, however, the
theoretical <constraints are not sufficient, especially when
the utilities of two states are very close.) This
enhancement has been implemented in the 1980 release of the
CADA Monitor (Novick, Hamer, Libby, <Chen, and Woodworth,
1980) . Other intricacies of the algcrithm are discussed

later.

The second enhancemenrt is concerned with the algorithm
used to calculate 1initial estimates fcr the utilities.
Since the estimation algorithm is an iterative improvement
algorithm, it requires a starting point. The current
implementation of the Novick-lindley fprocedure regquires that
all the adjacent gambles be used to calculate the initial
estimates. Although it may be that the adjacent gamlles are
easiest and wmost accurate to elicit (Ncvick, Turner, and
Novick, 1981) and therefore would always be available, this
restriction 1is unnecessary. All that is required is a set
of non-linearly-related gambles involving all the states.
While the numerical analysis needed to check the conditions
1s more complicated than the currently implemented schenme,

the increase in flexibility for the decisicn maker more than

offsets this disadvantage. (The initial utility estimates
are calculated 1in the netric of the indifference
probabilities.) This  enhancement has ret leen 1oplementsd

1n the CADA Monitor.
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| Chapter III. MULTIDIMENSIONAL SCALING
Section 1. Introduction
In this chapter, we will ©present the backgrcuna

material needed for the development of one approach tc the
utility assessment procedure that is the gcal of this pafper.
To this purpose, the chapter is divided into four sections,

including this one.

Section 2 presents a brief history of multidimensional
scaling. The works of Hotelling (1933), concerning the
principal components decomposition, c¢f kckart and G. TYoung
(1936) , concerning the approximation of a matrix by another
of lower rank, and of G. Young and Eouseholder (193s),
concerning the representation of a set of fpoints in terms of
their mutual distances, stand as the fcundation upon which
accomplishments in the field of multidimensicnal scaling are
built. Torgerson (1952) developed these ideas into a thecry
and method of multidimensional scaling, noting that the
dimensions in psychological, as opposed to psychophysical,

scaling are often unknown or contounded.
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Kruskal and Shepard (Kruskal, 1964; Shepard and
Kruskal, 1964; Shepard, 1966) expanded the concepts
developed by Torgerson to include nonmetric stimuli (i.e.,
ordinal) as well as metric stimuli. The analysis of grour
scaling was developed by Bloxom (1968), Carroll and Chang
(1970), and Schonemann (1972). This has been <called the
"individual differences" wmodel. In this paradigm, it 1s
assumed that data have been collected from several sources
(e.g., 1individuals) that have a common underlying structure
but different perceptions of that structure. The
differences in perception may include heterogeneous weight-

ing of the component axes or heterogeneous rotations of the

axese.

Much of the current work in multidimensional scaling is
being done by F. V. Young, et alia (de Leeuw and
Pruzansky, 1976; de Leeuw, Young, and Takane, 1976; Takane,
Young, and de Leeuwv, 1977; Young, 1975; Young, de Leeuwv, and
Takane, 1976a; Young, de Leeuv, and Takane, 1976b; Young,
Takane, and de Leeuw, 1978). A comprehensive theory of data
and modelling has been developed that includes both metric
and nonmetric scaling, and the many common models in mul-
tidimensional scaling such as the additive wmodel, the

regression model, the individual differences model, and the

principal components model.
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Section 3 presents the theory of data and modelling of
F. W. Young, et alia. The theory of data 1s structured
using the level of measurement (nominal, crdinal, interval,
and ratio) and the ©process of measurement (discrete and
continuous). This theory of data forms the basis for the
scaling phase of the algorithm presented by F. W. Young,
et alia, called Alternating Least Squares with Optimal Scal-
ing (ALSOS). As the multiattribute wutility assesswment
procedure presented 1in this paper uses this algorithm as a

base structure, the ALSOS algorithm is discussed in detail.

In Section 4, various topics in multiattribute utility
assessment that use the language and structure of mul-
tidimensional scaling are Fpresented. Mcst of these
applications wuse the additive model (e€.g., Green and Wind,
1973; Kruskal, 1965). Some use of the individual

differences model has also been made (Green and Wind, 1973).

Section 2. The History of Multidimensional Scaling

One of the 1initial attempts to view a matrix as a
projection from some set of axes different from the apparent
axes of the observed measurements is due to Hotelling
(1933). In his paper, Hotelling shows that one <can

construct a set of axes such that each axis represents the
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dimension of largest variation in the observed values that

is orthogonal to the other axes.

Hotelling's paper, and results due tc Courant and Hil-~
bert (Eckart and G. Young, 1936), were used by Eckart and
G. VYoung (1936) to determine the closest approximation to a
jiven matrix so that the approximation is of 1lower rank.
The solution 1is based on two results by Courant and Hilbert.
The first states that any real matrix may be decomposed:

Por any real matrix A, two orthogcnal matrices V

and 0 can ve found so that L = VAU' 1is a real

diagonal anstrix 4ith no negative elements.

This theorem shows that a decompositicn of a real matrix
exists. The second theorem, also due to Courant and Hil-
bert, shows the conditions under which a matrix of lower
rank that closely approximates a given matrix may be found:

If AB' and B'A are both symmetric matrices, then

and only then can two orthogonal matrices V and U

be found such that L = VAU' and ¥ = VEU' are both

real diagonal matrices.

The solution to the problem of finding an approximation to a
matrix that has a 1lower rank, say r, is to decompose the
matrix as indicated in the first theorem and use the first r

rovws and columns of the resulting decomposition and the

second theorem to construct the approximating matrix.

Another basic result is the representation of a set of

points in Euclidean space in terms of their mutual distances

(G. VYoung and Householder, 1938). In this paper, it is
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shown that under certain conditions, a set of numbers may be
conceived as mutual distances of a se€t of points 1in
Evclidean space. Matrices are also found in the paper whose
ranks determine the smallest Euclidean space containing such
points. The results of Eckart and G. Young are then
applied so that the representation of the set of numbers may
be approximated by a set of points in an Fuclidean space of

lower dimensionality.

These results may be applied to any set of numbers that
may be interpreted as measurements of distances among a set
of objects. The implications of these results were exfres-
sed by Torgerson (1952) as follows:

The traditional methods of psychophysical scaling
Fresupposes knowledge of the dimensions of the
area being 1investigated. The wmethods require
judgments along a particular defined dimension,

i.e., A is brighter, twice as loud, wmore conser-

vative, or heavier than B. The observer, of
course, must know what the experimenter means by
brightness, loudness, etc. In wmany stimulus

domains, however, the dimensions themselves, or
even the number of relevant dimensions, are not
know .. What might appear intuitively to be a
single dimension may in fact be a complex of
several. Some of the intuitively given dimensions
may not be necessary -- it may be that they can be
accounted for by linear combinations of others.
Other dimensions of importance may be completely
overlooked. In such areas the traditional
approach is inadequate.

The results of G. Young and Householder are not directly

applicable to the type of problems ennunciated by Torgerson.

The work of the former authors presupposes infallible data.
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The data from the oft-cited real world that Torgerson wishes
to analyze are 1likely to be distorted by errors of

measurement.

The «crucial aspect 1is in the measurement of the
distances between the objects. The origin of the Euclidean
space being determined is unknown. Young and Householder do
not address this issue, instead choosing cne of the objects
to represent the origin. There are, then, an infinity of
solutions, but each is a Fuclidean transformation of any

solution obtained by arbitrarily selecting an origin.

When the data are fallible, this solution is no longer
reliable. Selecting different objects to represent the
origin, each with its unique error of measurement, may lead
to qualitatively, as well as quantitatively, different
representations in Euclidean space. 1In particular, they are
not 1likely to be linear transformations of each other. A
solution to this problem, posed by Torgerscen, is to choose
the centroid of the objects as the origin of the Euclidean

space.

Torgerson's work assumes, hovever, that the operations
of arithmetic wmay be validly applied to the data measured.
For this reason, the procedure 1is called a ‘metric'
algorithm. The field of multidimensional scaling was expan-

ded to include nonmetric procedures, in particular those
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that rely on ordinal judyments atout the stimuli, Ly the use
of a scaling transformation. The scaling transformation is
estimated as a monotone function of the judgements, so to
preserve the ordinal characteristics of the data. The
crucial aspect of the transformation 1is the estimation of a
true zero on the scale of measurement so that the operations
of arithmetic are valid. With the Jjudgments <converted to
distance-like, or scalar-product-like, measures, the results
of Eckart and G. Young, and G. Youngqg and Householder, may
be applied, and a Euclidean space of low dimensionality wmay
be constructed that adequately represents the objects of

interest.

This extension of pmultidimensicnal scaling vas
pioneered by Kruskal and Shepard (Kruskal, 1964; Shepard and
Kruskal, 1964; Shepard, 1966). An additional 1mportant

contribution to this area 1s due to Guttman (cuttman, 196&).

All of the above works presuppose a4 single, unified
point of view. If data are collected from several sources,
the individual information is lost, as the emphasis 1s  on
some type of composite. Attempts to isclate an underlying,
comzon point of view yet preserve some ot the individual
information led to the development of the "individual
differences" model of multidimensional scaling (Tucker and

Messick, 1963: Bloxom, 1968; Horan, 196Y; Cdarroll and Chang,
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1970; Schonemann, 1972; Takane, F. W. Young, and de Leeuw,

1977 .

As in the previous models, a set of points in a
EFuclidean space of some dimension is determined using a com-
posite point of view. 1In addition, a set of weighting fac-
tors are estimated for each individual. These weighting
factors alter the unit cf measurement alcng each of the
dimensions of the common Euclidean space according to the
importance of that dimension as perceived by the individual.
Some of the individual differences models allow reflections

of the dimensions or rotations of the axes.

An algebraic solution to the individual differences
model has been proposed (Schonemann, 1972). Although the
algebraic solution is of some theoretical significance, 1its
practical application is limited, again because of the
instability problems of fallible data. In the above-
mentioned paper, Schonemann states:

We do not necessarily recommend its  use in

preference over presently availatle 1iterative

algorithes. Algebraic solutions sometimes have a

tendency to become unstable in the fallible case,

and it is therefore often safer to reglace them in

actual applications by algorithas which have well

understood optimality properties...
The approach 1in this paper follows the above suggestion in

that an iterative solution, not an algebraic one, 1is

proposed.
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A wunified theory of data has been proposed for mul-
tidimensional scaling by F. W®W. Young, et alia ( Young,
1975; de Leeuw, Young, and Takane, 1976; Young, de Leeuw,
and Takane, 1976a; Young, de Lleeuw, and Takane, 1976b;
Takane, Young, and de Leeuw, 1977; Young, Takare, and de
Leeuw, 1978). The development of multidimensional scaling
models and algorithms had been unfocused, but the theory of
data developed by P. W. VYoung, 2t alia, sets a structure
in which the various models fit. The next section presents

this theory of data in detail.

Section 3. The ALSOS Algoritha

Young, et alia (F. W. Younyg, de Leeuw, and Takane,
1976a), have defined optimal scaling as fcllows:

Optimal scaling is a data analysis technique which

assigns nymerical values to observation cateqories

in a way which maximizes the relation between the

observations and the data analysis model while

respecting the measurement character of the data.
Scaling techniques other than that ©proposed hy F. .
Young, et alia, have been wused (e.qg., Torgerson, 195¢;
Kruskal, 1964 ; suttman, 1968) wvhich <conform to this
definition, but the Alternating Least Squares with Optimal

Scaling (ALSOS) is the most coherently stated and suppotted

by a theory of data.
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The structure of the ALSOS algorithm consists of a data
space, an optimal scaling space, a wmodel space, and a
parameter space. The data space and the optimal scaling
space are related by an optimal scaling transformation. The
optimal scaling space can be viewed as a projection of the
data space onto a numerical space restricted by the
measurement characteristics of the data. The model space is
a least squares projection of the optimal scaling space,
subject to the restrictions imposed by the model. The model
space and the parameter space are related by a combination

tule, or formula, which defines the model.

The alternating least squares algorithm consists of
dividing all the parameters into two mutually exclusive and
exhaustive sets. One set is then taken to be fixed, and a
solution is calculated for the second set. This solution is
then taken as fixed for the second set, and a solution is
calculated for the first set. Hence the term “conditional
least squares" is used for this algorithm (de Leeuw, Young,
and Takane, 1976), as the least squares solution at each
ster is conditional on fixed (fFossibly unstable) values of
the other parameters. This algorithm has also been called
"block relaxation"® (Céa and Glowinski, 1973; de Leeuw, F.
W. Youngqg, and Takane, 1976). The process is iterated until

convergence criteria are satisfied.
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In the optimal scaling phase of the algorithm, the
observations are viewed as categorical and each observation
category is represented by a parameter. The number and the
nature of the categories, and thus the parameters, are
determined by the measurement characteristics of the data.

These are discussed more fully later in this section.

In the model estimation phase of the alyorithm, the
parameters of the model are divided irto mutually exclusive
and exhaustive sets as well. A least-sqguaie:. olutron 1o
calculated for each set in turn, conditicnal on tfixed values
for the other sets of ©parameters. The <cverall algorithm
alterpates between the optimal scaling fphase and the model

estimation phase until convergence criteria are met.

Convergence of the ALSQOS algorithm has been
demonstrated (de Leeuw, F. W. Young, and Takane, 1976; de
Leeuw, undated). It must be noted, though, that converygence
is guaranteed only to a solution, not necessarily to the
globally optimal solution. The developers of the algorithm,
however, appear to be satisfied that the globally optimal
solution is nearly always obtained (de Leeuw, F. W. Young,

and Takane, 1976).

The applicability of the algorithm tc 4 wide range of

models is indicated by the separation of the optimal scaling

phase and the model estimation phase. In fact, F. W.
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Young, et alia (F. W. Young, de Leeuw, and Takane, 1976a),
have stated:
If a least squares method is known for analyzing
quantitative data then a least squares method can
be constructed for analyzing qualitative data.
This, then, is the basis for applying pultidimensional scal-
ing methods to the problem of assessing wutilities in @ul-
tiple dimensions. In order to support this application, a

closer look at the optimal scaling transformations and the

measurement characteristics that imply them is needed.

The optimal scaling transformation is governed by the
measurement characteristics of the data. These measurement
characteristics have been organized into a theory of data by
F. W. Young, et alia (F. ¥#. Young, de Leecuw, and Takane,
1976a,b), described in terms of level of measurement ang
process of measurement. The levels of @peasurement, as
described previously, are binary, nominal, ordinal, inter-
val, and ratio. The latter twc levels are often combined as
numerical data. The processes of measurement are discrete

and continuous.

As mentioned above, all observations are interpreted as
categorical. This is justified in the sense that the
procedure by which observations are obtained is limited Ly
the finite precision of w®easurement and recording. The

level of nmeasurement, then, is concerned with the




relationships of the observations atonyg the cdtejories,
vhereas the process ot measutement 1o cclcerned  with  the

relationshiys within the categorleo.

The Ditaly Lewvel ot Legsyrement postulates two
CAtejortes, 1 Dol t; . +iy, *that au t.civation «>ther has
certain ochat oot 1oLt Yiow s Lot on the nominal

level  of Desnilement, thele Cal be several catejories, put
the only 1te ity tuon joverning *he relationships  among the
cateJOliv: 1. that trhe categolies d4lo ROt equivalent.  In
the ordinal level ot meicurcment, the categeries are assumed
to be ordered 1n some way, but there are nC Iestrictions o©n
the distance: between parrs of observations. In the inter~
val level of w@measurement, the optimally-scaled value 13
assumed to be a polyromial functicn ¢t the observation
value, includiny an optimally-scaled crigin. In  the ratic
level of nmeasurement the optimally-scaled value 1s also
assumed to be a polynecmial function «c¢f the observation
value, but the origin of the optimal scaling space i

assumed to be the sdame as that fcr the observation space.

For the discrete process cf measurecment, the cptimal
scaling space for all observations within a category 1is
represented by one number. On the other hand, in the
continuous process of measurement, the optimal scalinj space

within a category is represented by an interval. Thus, tor




the discrete case, observations in the data space that are
measured to be equal, or that are equally preferakble, are
transformed so that the optimally-scaled values are equal
(i.e., ties must remain tied). In the continuous case,
observations that are measured to be equal need not have
equal optimally-scaled values; however, the cptimally-scaled
values of all observations within a category will lie in
some 1interval. In both <cases, observations that dLe
measured not equal may, or may not, have optimally-scaled

values that are equal, or not equal.

F. W. Young, et alia, have related this theory of
data to other works. The discrete~ncminal case had been
previously developed by PFisher (1946). The continuous-
nominal case 1is handled by a two-phase method, the first a
discrete-nominal solution and the second a <continucus-
ordinal solution. The «crdinal cases are similar to
Kruskal's two approaches (Kruskal, 1964). The discrete-
ordinal «case 1is like Kruskal's secondary approach, wherecas

the continuous-ordinal case is like his primary approach.

The discrete-interval transformation 1is a polynomial

linear regression (linear in the parameters). The
ortimally-scaled values are polynomial functions of the
data. In the continuous case, the rclynomial regression 1s
followed by an estimation of the 1nterval boundaries. The
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ratio cases; are the <ame as the interval cases, with the

exception that the regression is thrcugh the origin.

Modelling of the scaied data 15 ©jually laportant in
Youny's theory of data. Various models arfe discussed in the
next section in exposition of multidisencicral scaling tech-
litques  in multiattribute uvtility asse o snacut and in the next

chapter in detail.

Section 4. Some Examples

Scme of the models of wmultidimensicial scaling have
been wused for the purpose of estimating utilaties. Scae,
such  as the additive model, have straight-tforwarad
counterparts in the uatility assessment literature. Thesc
w1ll be discussed more fully in the next chapter on conijoint
weasurement. Others, such as  the individual differences
madel, do not have direct analogies in the utility assessg-
sent field, but do correspond to generalizations of wodels
in conjoint measurement. These, too, will be discussed moro
fully 1in  the next chapter.  The purpese ot this section in

to reference some oxanples of the use of tisse models.

The additive nodel 15 the camplest of the models. Tty

theols  1n that  the  overall utility structule J: Comjp oned
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solely of the sum of the utilities alcng the dimensions of
the data space. In mathematical terms, the model may be

stated as follows:

(II1.4.1) u(xl, pr e Xy 1
vhere n is the number of dimensions, xi is a value along the
ith dimension, and ui(xi) is the utility at value xi along

the ith dimension.

This w®model has been used extensively in the literature
{e.g., Kruskal, 1965; Green and Wind, 1973; de Leeuw, F. ¥H.
Young, and Takane, 1976; Keeney and Raiffa, 1976; Hupphreys
and Wisudha, 1979). The mwmodel is analogous to the main-
effects analysis of variance, assuming that the interaction
terms are all zero. The difficulty with the model is its
assum~-“ions about additivity. It rpresupposes that the
utility structures along parallel 1lines through the data
space (e.g., parallel to the axis of one dimension) are sim-
ply translations of each other. This is a strong assumption

to make and it should be tested carefully.

A second model commonly purported is the individual
differences model (e.g., Tucker and Messick, 1963; Bloxom,
1968; Horan, 1969; Carroll and cChang, 1970; Schonemann,
1972; Green and Wind, 1973; Takane, F. W. Young, and de

Leeuw, 1977). In this model, we are presupposing that the
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data are collected from several, not necessarily comparable
sources and we are estimating a Euclidean subspace which
represents a common point of view. ¥e also estimate
individual weights for the dimensions of the Euclidean sface
which represent the importances of the dimension: as ©per-
ceived by the individuals. As a mathematical model, it can

be represented as follows:
(III.4.2) D, = X'W X

where Di is a matrix of scaled data for individual i, X 1is a
matrix of coordinates in some Euclidean space for the set of
stimuli, and W, is a matrix of weights for individual i. 1In
some models, W, is constrained to be diag¢:nal so that the
model allows only differences cf perception along the axes
of the common space represented by the matrix X. In other
forsulations, the wmatrix W, may be a general orthogonal

matrix so that the individnal differences wmay be manifested

as rotations of the set of axes of the common space.

Por examples of the wuse of individual differences
models in utility assessment situations, see Green and Wind

(1973) .
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Section 1. Introduction

The field of conjoint measurement is concerned with the
foundations of measurement. Assuming only the existence of
sets of objects and basic relationships among them, the
existence and uniqueness of numerical scales may be
established. Several axiomatizations have been presented in
the literature that result in different structures involving

nultiple dimensions.

Conjoint measurement is closely related both to wmul-
tidimensional scaling and to utility estimation. It has

been claimed that multidimensional scaling is a special case

of conjoint measurement (Tversky, 1967a; F. W. Young,
1972). It can also be seen that utility estimation, in
various formulations, is a srecial case of conjoint

measurement (Tversky, 1967a; F. W. Young, 1972; Krantz,
Luce, Suppes, and Tversky, 1972). OCne of the goals of this
Paper is to present utility estimation in a general formula-

tion of conjoint measurement.
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The field of conjoint measurement is also relevant to
this paper for its model formulations. The two most widely
used models for nwultiple-attribute utility functions, the
additive and the multiplicative models, have been
extensively investigated 1in the literature (Krantz, Luce,
Suppes, and Tversky, 1972; Keeney and Raiffa, 1976). The
additive model presupposes that a multiple-attribute utility
function is a (possibly weighted) suzr of the single-
attribute utility functions of its compcnents. The mul-
tiplicative wmodel presupposes that a wultiple-attribute
utility function 1is a product of the single-attribute

utility functions of its components.

In Section 2, the additive and multiplicative models
are discussed. An axiomatization of @measurement for each
model is briefly presented. It must be realized that other
axiomatizations leading to the same model are possible, and
that the axiomatizations selected are for 1illustrative
purposes and not particularly for ccmparison. Some
inmplementations of these two models are alsc referenced dnd

the disadvantages of the models are outlined.

In Section 3, two more general theories of conjoint
measurement are discussed (TIversky, 1967a; F. W®. Young,
1972). Both are concerned primarily with polynomial con-

joint measurecment, 1i.e., the model of a multiple-attribute
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utility function is a general polynomial function of the
utility functions of its components. The second theory,
unlike the first, is not an axiomatization, although it 1is
more dJeneral in that it allows more general functions for
models than polynomials. The additive and the mul-
tiplicative models are special cases cf these theories. The
utility assessment procedure of Novick and Lindley (1979) is
also related to the formulation of Young, thus establishing
the connection with a concrete example and providing the
motivation for the development that follows in the next

chapter.

Section 2. Additive and Multiplicative Models

In this section, twvo axiomatizaticns of conjoint
measurement are presented. The first is an axiomatization
of additive conjoint measurement (Luce and Tukey, 1964).
The second 1is an axiomatization of multiplicative conjoint

measurement (Roskies, 1965).

In the additive axiomatization, the resulting
representaticon of the nmeasurement scale ot a multiple-
attribute consequence set is a sum of measurement scales  of
the individual attributces. For example, Yot 4, P, .., ¥ L

disjoint  sete of CONDEGUENCeG; tihen, 19 the conie 1 nice
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space of 1interest 1is a subset of the product space

AxBx...xK,

(IV.2.1) u(a,b,...,k) = u\(a) + uHxL) I S

The axiomatizations leading to this representdtion are
presented 1in Table Iv.2.1. This 15 the original
axiomatization; there have been several cxtensions that are
not presented here (Krantz, 1964; Luce, 1966a; Krantz, Luce,
Suppes, and Tversky, 1972). Some of these extensions
provide for the k-dimensional representation illustrated
above. Other extensions generalize the notation. The

characterization is essentially the sanme.

The key axiom to the additive representation is Axiom
3, the Cancellation Axiom. It is best illustrated in the
following three by three table
P X Q
A (A,P) (A,X) (R,0Q)
F (F,P) (F,X) (F,Q)
B (B,P) (B,X) (E,Q)
The axiom assumes that the orderings along the diagonals,
from the upper-left-hand corner toc the lower-raight-hand cor-

ner, are consistent.

This is a strong assumption to make, and it leads to a

strong representation. In the additive model, the contiibu-
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Table 1Vv.2.1

The Luce-Tukey Axiomatization

(Luce and Tukey 1964)

Let A be a set with typical elements A, B, C, ..., ¥, G, H,
e and P a set with typical elements P, Q, R, ..., X, Y,
Z; then Ax P consists of pairs (A,P), (A,Q), (B,Q), etc. Let
> be a binary relation on such pairs. (Thus > is equivalent

to a subset of (AxP)x(AxP)).

(VA) Ordering Axiom (Axiom 1). > is a weak ordering, i.e.,

(VB, Reflexivity) (A,P) > (A,P) holds for all A in A and P
in P

(VC, Transitivity) (A,P) > (B,Q) and (B,Q) > (C,R) imply
(A,P) 2 (C,R);

(VD, Connectedness) Either (a,P) 2 (B,Q) cr (B,Q) 2 (A,P),
or both.

{(VE) Definition. For A, B in A and P, Q in I, (A,P) =
(B,Q) if and only if (A,P) > (B,Q) and (B,Q) 2 (A,P);
(A,P) > (B,Q) if and only if (A,P) > (B,Q) and
not ((B,Q) 2 (A,P)}).

(VF} Solution (of Equations) Axiom (Axiom 2). For each A

in A and P, Q in ¥, the equation (F,P) = (A,Q) has a

solution F in A, and for each A, B in A and P in I,

the equation (A,X) = (B,P) has a solution X in i'.




(VG)

(VIA)

(VIB)

(VIO)
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Table Iv.2.1

{continued)

Cancellation Axiom (Axiom 3). For A, F, B in A and P,
X, Q inP, (A,X) > (F,Q) and (F,P) > (B,X) 1mply (A,P)
2 (B,Q).

Characterization. A doubly infinite series of pairs
{Ai,Pi}, i=0,#1, *2, ..., with Ai in A and Pl in F, 1is
a dual standard sequence provided that

(ﬁn,Pn) = (Ap,Pq) whenever m+n=p+q for positive, zerc,
or negative integers m, nh, p, and g. A dual standard
sequence is trivial if for all i either A=A, or
Pi=PO' in which case both hold ty transfer.
Archimedean Axiom (Axiom 4). If (Ai,Pi? is a non-
trivial daeal standard sequence, B is in A and Q is in
P, then there exist (positive or negative) integers n

and a such that (An,Pn) 2 (B,Q) 2 (Am:P ) .

m

-

g




¢ : Se v ulel o attllow ava, ~dC
and Tukey have states {1041

More generally, a guestion raised throughout the
social and Dbehavioral sciences 1s whether twe
independent variables contribute independently to
an overall effect or response. The usual approach
is to attach toc each fpair of values of the
variables a numerical nmeasure of effect that
preserves the order of effects ani then to test
for independence wusing an additive statistical
model, probably one of the conventional analysis
of variance models. W®hen dependence (interaction)
is shown to exist, one 1s uncertain whether <the
dependence 1s real or whether another measure
would have shown a different result. Certain
familiar transformations are often applied in an
effort to reduce the danger of the second pos-
sibility, but they are unlikely to approach
exhausting the infinite family of mcnctcnic trans-
formations, so that one cannot be too sure of the
reality of an apparent interaction. Our results
show that additive 1independence exists provided
that our axioms are satisfied; of these, the most
essential one from a substantive point of view is
the <cancellation axiom, which is alsc a necessary
condition for an additive representation to exist.
Thus, one could test the «cancellaticn axiom by
examining a sufficiently volumincus body of
ordinal data directly, without introducing any
numerical measures and, thereby, test the primary
ingredient 3in additive 1ndependence. In some
applications this should be more convincing than
present techniques.

Comments about the adequacy of the additive representation
in general situations are presented later in this section,
Suffice it to mention here that the assumption of daddaitivity
is not one lightly accepted, and one needs alternatives for
those situations when the additive representation is not

appropriate because of the violation of cne or more of the
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axioms.

Closely related to the additive representation is the
multiplicative representaticn. The axioms ot the Foskies
system (Roskies, 1965) are listed in Table IV.Z.2. There is
a clear analogy between the Luce-Tukey system aund the
Roskies system. Axioms 1 through 3 of each system serve
analogous purposes. Axiom 6 of the Roskies system 1s stated
to be the same as Axiom 4 of the luce-Tukey system. The
major difference are the axioms in the Roskies <system to

establish the 1dea 0of zero.

The representation imfplied by the Rcskies axiomatiza-

tion is a multiplicative one, as follcws:

(IV.2.2) 1 + Ku(A, = A, XKe.o.X A CIHRK R A

1 2 K o R ] 1
Note that this may be converted to an additive representa-
tion Ly the use of the lcg transformaticn and the realiza-
tion that the scales u, ul, e, u* 4are unidue only up to a

positive linear transformation.

These two representations, the additive model and the
multiplicativ. model, are piominent in the fi1old of conjornt
measurement  and 1n the field of utilaty EENTIEE TR
specific .xamples wmay be found in Flshkburn (19ut), Pollak
(1967, Green and wind (1971), Keeney and Sacherman (1979),

feeney  and kadrffa (1976), and Humphreys anud wisudla (V97Y4),




72

Table 1IV.2.2

The Roskies Axiomatization

(Roskies 1965)

Let A be a set with elements A, R, C, ..., F, G, ... and
let ! be a set with elements P, ¢, R, ..., X, Y, .... Ax

consists of pairs (A,P), (B,P), (C,X), etc.

Axiom 1. oOrdering. Let > be a binary relation on :x . such
that > is a weak ordering; that is, fcr all A, E 1w
and P, Q in V7,

(a) (A,B) 2 (A,P);

(b) if (A, P) 2> (B,Q) and (B,C¢) > (C,F) then (A,F} >
(C,R);

(c) either (A,P) 2 (B,C) or (B,C) 2 (A,F).

Definition. (A,P) = (B,Q) 1f and only if (A,P) 2> (B,Q) and
(B,Q) > (A,P); (A,P) > (B,Q) if and only it not ((E,¢) >
(A,P)) .

Definition. Since the ordering > 13 weak, 1t pattitzon:n X
into equivalence classes defined by =. From now cn, w:«

vork with the equivalence classes, which we continue to

denote Ly (A,P).




(continued)

e IR

F Lefinition of zero. Let
SOA 1 (A LRy = (A L) for a1l B, uoanm o,
SR 1 (A,P) = (B,P) for all A, I in . ,
D= (A,PY | ei1ther A Is in S or D ois in . or both

'
=

Axiom 2. Solution of equations. Let A, E be in 4 and P, O

te 1in - . If B is not 1in :4' there exists ¥ in such
that (A,0y = (6,X). If P 1S not in e there exists F
in A such that (F,P) = (B,0Q).

Axiom 3. Cancellation. Let A, A', A'' Le in A and ¢, b,
PYY be in . If A' 18 not in . or 1f I'' 15 not in ,
and 1f (A,P') = (A',P'') and (A', D) = (A'',ib'y), th;n
{(a,P) = (A*',Pv"y.

Axliom 4., Sign, Let P, ¢ he not in - It (A, E) - (R,%) tol
some A not in ¢ then (E,U)S(F¢Q3 for all ©E not an ;
similavly, 1f A, B btc¢ not in = and 1f (A,P)s(is,P) e
some P not in -, ther (A,0)s(F,0) tor all ¢ rot in .

where (A,P)s{B,Q) if (A,P) > 0 and {(F,0) > O gy 1t
{A,P) < 0 and (BR,Q) < 0. When (A, EYo(R,Q), Wwe write
P5¢; s 1u an eguivalence relation an - We o defaine
AsB  simsilarly, and we define F-ug Anu A-sb o oan ths
obvious way: (A, D)Y~5(0,0) means that (4, v) > thid

(B,0) € 0 or (A,P) < O and {+,0) > 0.
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Table I¥.2.2

(continued)

Axiom S. Let A, B be not in {1, P, ¢ not in .
If PsQ and (A,P) > ({(B,P) then (A,Q) > (B,AQ):
if P-sQ and (A,P) > (B,P) then (2,Q) < (B,Q);
if AsB and (A,P) > (A,¢) then (B,P) > (E,Q);
if A-sB and (A,P) > (A,Q) then (E,P) < (B,Q).

{ Axioma 6. The Archimedean fproperty as defined by Axiom 4 cf

the Luce-Tukey system holds on (2 xity.




asony others.

Section 3. Polynomial Conjoint Measurerment

In this section, two general thecries of conjolne
measurenent are discusseda.  One 1o a polyncoial representd-
tl1on axiomatization (Tversky, 1907a). The otuer (F. .
Yfoung, 1972) 1s not an axiosnatization, and 15 not restricted
to polynomial representations, but 135 1 presentation of a

Jeneral theory of conjoint mReasulement models.

The axicmatization bty Tversky 1s f[resented here for
completeness of background material. The axiomatization 15
not discussed 1in  detail, hut 1s merely presented a:
theoretical support tror the refresentatich, or awoidel, tha:
is the subject ot this raper. The yarer Ly Younj 1g

presented to provide justification for the model develojed

in the next chapter.

The axiomatization by Tversky 15 4 gedwLallzation o

those by Luce and Tukey and by Hoskies. Ao Tveloky Staten:

The [lUetient theotw Jenel al 1w COn o1t
reaourencent potive ma ot Lenpec t, (1) it

formatted a0 teran or partial tather toan Tally
crdered data. (b)) Tt applies to bBoth olainal ana
numerical data. (¢)y It 15 oapplicatle to finate g
vell as antanite data stiunctures, (1Y Tt opravades
a neCe L naty A suffracrent conirtion t o
et enent (¢) Tharo condition vpr L toy any




rolynomial wmeasurement wmodel; that 1is, any model

where each data element is expressed a a specified

real-valued, order-preserving polyncmial function

of its components.
The first respect 1is imrortant because it allows two data
2lements to be uncoaparable. In vprevious axiomatizaticns,
1t  was necessary that for every two data elements one be at
Jeast ay preferable as the  other. In the applications
considered 1n this paper, utility assessrent, it may be that
two data elements may not be comparable because of the
unlikelihood or the incomprehensibleness ¢f che ol the other

of <he sltuations that the data  elements represent. Thae

Jeneralization allows us to ignore such 4 protblean.

The second respect provides a theoretical justificaticn
tor the levels-of-measurerment data structuring used by F.
W. Young, et alia, as presented in the [frevious chapter,
and adapted 1n this rpaper. Although the proofs of the
representaticn  provided by Tversky are not directly
applicable to all the data structures described by Young, in
particular  the nominal level of measurcement, they do apply
to most of the situations, and the general structure cf  the

theory appears to fit in all casesn,

The third redpect 1o important tecause it gJeneralizes
the colvabillity axinms, which were crucial i1n the previou:

ixiomatizations, In the Luce-Tukey and 1in  the Hoskiles

systems, 1t o in neceassary that the data stiuctures  be  dens
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enough 50 that soluticns to equivdalence relations (=) ex-ot
in all cases. The formulations of the sclvability axiowos
required that the data structure be 1nfinite. The Tversky
generalizaticn relaxes this restriction, allowing greater

flexibility in application.

The previous axicmatizations did nct directly address
the question of necessity and sufficiency, and therefore
should be considered to represent sufficient conditions

only. The Tversky theory does address this guestion.

The fifth respect allows less restrictive nodels than
the previous representations. If x = (a,tk,....,k}) 1is 4 data
elexent in AxBX...xK where a is inm A, © i1s in B, ..., k 1s
in K; 1, m, ..., u are 1integers; then the rerresentation can

be displayed as

(IV.3.7) v 0

wvhere the summation 1s over some subset c¢f all combinations
of 1, m, ..., n. Formally, Tversky states:

A data structure D = < , >C > 1% 4 system where
is a suabhset of the product set AxEx...xK of sone
finite number of disjoint sets A, E, ..., K, and
is partially ordered under >o. That 15, >0 is5 a
binary relation defined on | which satisfies the
following conditions for all x, y, 2z in

(1) Raflexivity, x Yo x;

(11) Transitivity, x >0 y and y >0 z imply X

>0 z;

X =0 y 15 defined as x > y and y >¢c xX; x »>o y 1.
defirued as x >0 y and not y 20 X.




A data structure D is said to satisfy a polynomial
measurement mnodel M whenever there exists a real-
valued function f defined on D and real-valued
functions g\, £f,, -.-, £, defined on factors A, E,

&}

ey K such that, for any data element
(a,b,-..,k): ) o

(iy L(a,b,..., k) = M(th(q),fg(b),..., tK(k))
where M is a polynomial function of its arguments,
that 1is, a specified combination of sums,
differences, and prcducts of the functions f., f,,
eee, £ )

(£5)  for all x = (a,b,.--.k), x' =
(a',b',...,k'), x >0 x' implies f(x) > f(x') and x
=0 x' implies f(x) = f(x') where >0 and =0 denote
the order observed in the data.

Tversky notes that the general polynomial conjoint
measurement model encompasses a wide variety of well-known
measurement models. Included as examples are Eull's and
Spence's performance models as cited in HEilgard (1956), the
Bradley-Terry-Luce choice model (Luce, 1959), the mul-
tidimensional scaling models, and Savage's subjective expec-

ted utility model (Savage, 1954).

Although not an axiomatization, and thus not as
strongly placed on theoretical measurement foundations, 1is

the generalization of conjoint measurement offered by Ycung

(F. W. Younyg, 1972). Young presents a general functional

form,

(IV.3.2) Rix) = hooh s, aw 1), o [ I
Pl . L.

where the notation x,1 15 vsed to dencte the 1th row of X,

and X is a matrix of coordinates used to sp.tially represent

a set of objects.
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Young then showvws hov various models presented 1n the
literature can be represented by this general functiocnal
form. Included are the Fuclidedn and Minkowski distance
scaling (Kruskal, 1964; Shepard, 1966; Guttman, 196&), @mul-
tidimensional unfolding (Coombs, 1964) ana a gelieralization
to Minkowski metrics, monotcne analysis ot variance
(Kruskal, 1965) which 1s related to the additive conjoint
measurement model (Luce and Tukey, i964), rolynomial con-
joint measurement (Tversky, 1967a), non-metric facter
analysis (Sherpard, 1966; Lingoes and Guttman, 1967; Kruskal
and Shepard, 1974), subjective expected utility (Savage,

1954) , and the Bradley-Terry-Luce choice wodel (Luce, 1959).

using Tversky's theory, being applicatle to numerical
data as well as ordinal data, it 1s easy tc see that Younj's
formulation applies equally well to metric factor analysas
(Libby, 1979), principle components analysis (Young, Takaune,
and de Leeuw, 1378), regression anhalysis (Young, de Leecuw,
and Takane, 1976b), analysis of variance (Kruskal, 196u4; de
Leeyw, Young, and Takane, 1976), and analysis ot covariance

structures (Libby, 1979).

We can also formulate the model of utilities used by
Kovick and Lindley (1979) using Young's thecry, in the sane
way that Tversky and Young formulate similal models.

Although not strictly a polynomial w@odel, the @matrix of
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indifference probabilities can be likened to Young's matrix
of similarities which is fitted by a function, in this <case

the ratio of certain differences, of the utilities.

There are two relevant conclusicns in the paper hy
Tversky. The first is
The generality of the present thecry, however,
stems not only from the fact that most measurement
models proposed <can be represented as polynomial
functions but also from the well-known result that
any continuous real-valued function <c¢n a closed
bounded region can be uniformly approximated
arbitrarily closely by a polynomial function.
This certainly applies to the applications of 1interest for
this paper, namely utility assessment. The second ¥
conclusion is
The present theory, however, does not provide any
simple set of wempirically testable conditions
wvhich can be easily interpreted as a substantive
theory. Furthermore, the general theory does not
provide any constructive procedure fcr obtaining
the desired numerical representation.
In fact, because of the difficulties, testable conditions
have only been developed for simple models (Krantz, Luce,
Surpes, and Tversky, 1972; Fishburn, 1973). Tversky (1967a)
also leaves open the fproblem ot M™the development of
ippropriate error theories rtojether with a statistical

Analysis of the problems of gocdness-of-tfit of the data to

models."

Some of these problems will be addressed 1n the next

chagpter, relative to a specific model applied to the assen:-




ment of utilities in a multiple-attribute space.

51
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Chapter V. POLYNOMIAL UTILITY ASSESSMENT

Section 1. 1Introduction

In this chapter, we outline how the theories and
methods of multidimensional scaling and conjoint measurement
may be employed to obtain one extension of the uniattribute
utility assessment procedure of Novick and Lindley to mul-
tiple attributes. The process 1is straight-forward, and
therefore it 1s not be discussed in great detail. Some of
the interpretations of the resulting representation dre

interesting, however, and are reviewed.

In Section 2, the Novick and Lindley procedure 1
represented as a general conjoint measurement mnodel, as
formulated by F. #W. Young (1972). It 1s then =hown that
this representation can be extended to wmultiple attribute:
1n  a straight-torward manner. The resulting representaticon
15 a general, fixed-state, discrete, multiattribute utility

function.

This model requires that utilities be inferted fon

every point in the multiattribute space that is used 1n the

elicitation procedure. In hijh-dimensicnal problems, this
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involves many parameters; theretore, the pclynomial conjoint
measurement theory 1o invoked to provide o mcrse parsimonsous
representation. In particulat, We ook ar a radlrth e lee
polynomial of the uniattribute =ocale representation. 1t
should be remembered, however, that thero 10 0o good Seasure
ot the adequacy of the rejrescentation nor i1s there a4 theoly
of error of measulement {or  the jeneral  polynomial

representation. These 1ssues are discussed i1n section 3.

By invoking techniques from multidimensional scalinyg,
We can relieve some of the diftficultaies that led Novick and
Lindley to infer utilities in the logodds metrirc. We suyg-
gest that the elicited indifference prohabilities may bhe

scaled hefore fitting the polynomial model of the utilities.

We also address the problem of the relationship between
the model space (e.qg., the resulting umiattribute scales an
the polynomial representation) and the underlying chijecat
sspace. In particular, we suggest that o systen ot tourth-
degree polynomial functions ®ay bLe 11t to the distortiau
between the tuo spaces when the undetlylrg otject space 1
assumed to be o subsaet of the product o jace o 1eal numbers.

The works of other authors alonj these same lanes 1o cated,

In Hecti1on 3, we discuss the  uvoofulbes:  of t he
tepresentation derived in this chapter ani lcok at  sope  of

the difticulties. tevaral sulmodels, special canen ot th
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Jeneral model, are fresented and their interesting :
interpretations discussed. The protlem cf adequacy of the ;

representation is also discussed.

Section 2. The Extended Novick-Lindley Procedure

i
Recalling the development of the Ncvick and Lindley
fixed-state utility assessment procedure from Chapter 2, the ]
basic model may be represented as
')'\,’\ ul—ﬁ‘
(V.2.1) <, = o < _ | ¥
by Gy T
3
vhere p. , 15 the probability that equates utility u with a
IS S I

gamble 1nvolving two states with utilities u  and N e dssum-

xng  that u >u >u . Thils will ncw he related to the geueral
K ' i

conjoint measurement model of F. W, Yecung (1972). First,

however, 1t must be noted that we are cconcerned here with

three variables (i, j, and k) whereas Ycung': tormulation,

us1lny conventional matrix notation, wao cencetned with only
two variables. This poses no real problem ard  he 1pesolved
any  one  of  several  vays. The e€asiest,  perhaps, 15 to

concelve of k index:n; the columns of Younqg's matrices and |

and j toyether indexing the rows.




We can thereforce¢ derive a convenrlient corrcespondences

between the two model:, recallang Young's gencral model:

by letting X be the matrix of inferred util.ties (a4 column

vector), 1*=(i,]j) and j'=k, h be an identity function, and

(v.2.3) TR S U S S R {‘; .

Now 1t must be noted that in the abeve formulation, u ,

u}, and u, are used to denote function values, in particularc

)e u{ ), and u( ), respectively, where ‘ . and

H ) i

are points, or objects, 1n the underlying uniattribute

space.  The jenwvralization to multiple attributes 15 now
clear. If we let ¢ .. and _ be fgoint, in a mul-

I,

tidimensional space andl u( ) be a4 functicn trom the mul-
tidimensional  gpice,  of which _ 1s a geéncric elepe-nt, into
the real nuambers, then the above model (V.oZ.1) Jives  usooa

ntility fanction over a wsultidimeusional cutcome space.

Some of the 1mplications of  this model  should be
pointed out. Firaot, t he janules  that Aie U d intkhy
elicitation procedure, which 15 exactly the  same g
adveccated by Novaick and Lindley and nyplemented Ly MNeviok,

et alla (THaacs  and Novick, 19718, Nevick, damer, Labhy,
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Chen, and Woodworth, 1980}, 1involves e€ach roint 1n the
underlying space without regard tc structure other than

order in the utility metric. We make the same assumpticn

that the multiple attribute utility function 1is a
monctonically increasing function of the underlying
dimensions. The resulting reprresentaticn 1is a monotonic

point (i.e., discrete) function with a4 vector arygument.
This 1s directly analoyous to the implementation by Novick,

et alia, cited above.

Because of the formulation of the mcdel, every point 1n
the underlying space must be involved in a gamble in order
that a utility for every point be inferrable. There nmay b
a large number of points in the space. Sufpcse,  tor  exan-
ple, that we wish to infer utilities in a three-dimensicnal
sipace. ¥We might then choose, for exaample, nine points  of
interest along each of the throe dimensicns. If we wish to
view the coamplete product space of these thice dimensions,
ve have 9%9%9 = 729 points in the space, and therefore 727
utilities to infer! (Recall that we acsume that  the  least
rreferred  point han utility  zero  and the mest preferred

point has utility one.)

As the number of utilities to he estipated 15 50 latjge,
the number of gaambles for which 1ndifterence probabilities

sust  be elicited 1 also large. We would like to prescnt
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ot the least and the most preferred staten, and assaning
that every point in the product space 1s attainabkle (a
relaxable assumption), the weights 1in the polynomial
representation must be greater than ¢r equal to ¢=rc, Le
less than or egqual to one, and  sum t> ol These
constraints are not particularly difficult and can ¢asily te

implemented with well-kncwn numerical methods.

To see the parsimony ct the model, we must  Jetermine
the number of parameters that must be inferred. If we wishk
to represent the same three-dimenrsional mc¢del used as  au
example above, we have three uniattribute utility functions
of nine states each and thirty-fcur weights 1n the
polynomial function. This gives tifty-t:ive parameters to
infer (recall that two utilities inrn <€ach of the three
utility point functions are fixed). Thus the jolyromial
representation re¢jquires considerably  fewer  parancters (959

compared to 7:7)!

To implem=nt the polynemial representation, we rcter
back to Young's general conjoint measurenent model (wyuation
V.2.2). In the formulation of the Novick and Lindley wcdel,
wr chbserved that the function h (.) was anp  ildeutity func-

tion. By using a fourth-deqgree  polyncmial function for

h (.) instead, we et our desired reprecentation.
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1ndifference probabil.tles nNear 2e¢D0 TL Loal dne) would b
mOLre  precise than in the midai« f tece domaln so al adlagcot-
inyg transformation was neeledi. Locent tesedrch hLas chown
that this 1s pot necessarily 2he ~ase (MaveXawa, 1581).

The use 0f any transicrsation (v.j ., 17°;0d45, 4icsons
of the sguare root) for such purpocses can fe Viewed  do g
soaliny  opseration {(5e2e¢  Luce ard  Tukoy, Tohuy Far the
reasons cited sn othe Luce and Tukey [papar, Z..-., that w.ot
the use  of 4 rarticularlr tronsioifdtlon OLS Sovs net Koo
whether a different transtormation Tlght D Ve J1ve
daitterent resualts, the nse of 3 general sonotone tlagnsfol fes
tion mijht be aidvicable.

Finally, we address ot prel o o 1vtatingg o th
inferred utllity space with thLe underly.n, obtect space.
the underlying  object ST Lioooan fact Tiudiet 1
utilitires have been o xbhauastively 1nfeilvag Ly tiho prooon
advocated abcove, thevre 15 nothing mor. ta doy ot " M
the cate, huwever, tarticaliriy oo esucation, g .
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that the underlying object space is a subset of the product
space of the real numbers (e.g., each dimension in the s5pace
is a subset of the real numbers). In such cases, it is
useful to construct a functional relationship between the

derived utility space and the underlying space.

In the unidimensional case, examples of this construc-
tion may be found in Novick, et alia (Isaacs and Novick,
1978; Novick and Lindley, 1979; Novick, Hamer, Libby, Chen,
and Woodworth, 1980), where pieces of probability functions
are fit to the utility point function. In the w@ul-
tidimensional case, examples may be found in Ward, et alia
(ward, 1977; Hendrix, Ward, Pina, and Haney, 1979; wWard,
Pina, Fast, and Roberts, 1979), where techniques of %policy
capturing” and "policy specifying” are used. Policy captur-
ing 1involves predicting the behavior c¢f a Jjudge with
relevant variables. This 1is also called "bootstrapping"
(see Dawes, 1973). Policy specifying involves 1logically
specifying functional relationships among relevant variables

in a hierarchical, binary tree fashion to develop a model.

Presumably, one <could fit pieces of probability func-
tions to the marginal utility functions derived above. A
siapler method would be to employ a technique similar to the

bootstrapping in Ward, et alia. Instead of using the

utility estimates specified by a judge, however, one might
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infer the marginal utilities from the behavior of a judge in
the manner described above and then fit polynomial functions
of the variables in the underlying space to the marginal

utility functions.

Thus we have the following two-stage model of
utilities. Let U be an arbitrary point in the underlying

space. Then

(V.2.4)  u() = pgluls))

where p4(.) is a fourth-degree polynomial of its arguments,

with crossproducts, and

(V.2.5)  u(y) = g, ()

vhere g4(.) is a systen (vector) cf fourth-degree
polynomial functions of the components of ¢. ©Note that each
of the components of the vector u(.), the marginal utility
functions, is a polynomial function of all the components,
and crossproducts, of the underlying space. This complexity
gives us considerable flexibility in mapping the distortion

from the underlying object space to the utility space.

Implications of this model and a courle of submodels

are discussed in the next section.
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Section 3. Discussion of the Polynosial Model

As ve showed in Section 2, the polynomial representa-
tion can provide us with a more parsimonious model than the
point function representation covering the entire underlying
object space. Parsimony not only give us a conceptually
simpler model, but also one that is easier to estinmate.
Because there are fewer parameters for which to infer
values, our elicitation, or data collection, task 1is wmuch
simpler and therefore less tedious to both the the measurer
(vhich may be a computer) and the decisicn maker (from whonm

the data are elicited).

The polynomial model is not without costs, however, as
intimated above. The major costs are (a) it 1is an
approximation except in strictly defined situations, (b)
there are no tests for correctness exceprt in a few special

cases, and (c) there is no theory of error or distribution.

The strength of the model, as stated by Tversky (1967a)
and guoted in Chapter IV, is that a polynomial function is
very versatile. A polynomial function <can be found to
approximate any bounded, continuous surface. It is still an
approximation and therefore does not fit exactly, in
general. Thus, it becomes important to have testable con-

ditions of correctness of the model, to identify those cases

S A—W
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vhen the fit is exact, or a strong errcr theory to support

and evaluate the approximation.

Except for simple cases, there are no testable con-
ditions for the general polynomial model (Tversky, 1967a;
Krantz, Luce, Suppes, and Tversky, 1972). Two of the
special cases were discussed in Chapter IV, the additive and
the multiplicative representations. Cancellation conditions
and independence <conditions for these and other simple
models have been studied extensively 1in the literature
(e.g., Fishburn, 1965; Keeney, 1971; Krantz, Luce, Suppes,
and Tversky, 1972; Narens, 1974, Keeney and Raiffa, 1976) .
Conditions for the appropriateness of certain simple
distributive models have been investigated (Krantz, Luce,
Suppes, and Tversky, 1972). Conditions for simple bilinear
forms have also been studied (Fishburn, 1973b). These
models are all simple and at least suffer from the flaw that
the conditional utilities, those derived from fixing all but
one attribute at some combination of levels, are all linear
functions of the marginal utility of the remaining variable

attribute.

The existing theories of measurement giving testable
conditions for correctness of the model also suffer from an
assuaption of infallible data. There exists no theory of

error or of distribution. If one of the axioms, say the

— e —
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transitivity part of the weak ordering axiom, fails then the
nodel fails, The failure of transitivity could be due to
error of measurement, but there is no way cf accounting for

this in the current theories of conjoint measurement.

One approximation to a solution to the problem of model
selection with fallible data is a procedure like that used
in regression analysis or the analysis of variance. As
indicated in a previous chapter, <classical regression
analysis and analysis of variance can be considered as con-
joint measurement problems with strong metric assumptions.
One could infer the overall multiattribute utility function
and, wusing it as the dependent variable, apply one of the
model selection algorithms of classical regression analysis

to the proposed model.

There are two major difficulties with this approach,
hovwever. One is again concerned with the lack of a theory
of error or distribution. The dependent variable not only
has no established theory of error but is also inferred, not
observed. Secondly, the procedure requires that a 1large
number of parameters be inferred. Not cnly must the entire
overal)l utility point function be inferred, but also all the
parameters in the model. We do end with a more parsimonious

model, but a considerable data collection task is required.
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Finally, the proposed polynomial ®model is not always
sufficiently wmore parsimonious than the general point func-

tion to be worth the effort. The example selected above to

illustrate the polynomial model «cast it in a good light.
Indeed, when one is interested 1in a three-dimensional or
higher representation with many points along each dimension,
the polynomial representation will be more parsimonious.
When one is interested in a two-dimensional representation,
the advantage of the polynomial model disappears. 1In the
three-dimensional case, the general polynomial model becomes
attractive only if we are modelling more than five points

along each dimension. '1

Since many of the applications of interest are likely
to involve models of low dimensionality, generally two or
three because of the conceptual simplicity, the polynomial

representation may be maryinally useful in practice.

The general polynomial formulation does have two sub-
models that are of some interpretational interest. First,
if in equation (Vv.2.5) the system of polynomial equations

34(.) degenerates into a single polynomial function qq(.),

and equation (V.2.4) is taken to be an identity function, we
have a polynomial fit of the variables of the underlying
object space to the overall utility point function. This is

essentiall the %“policy capturing® paradigms of wWard, et
Yy

et tenniuns - e ———
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alia, cited above.

Second, if we 1let each equation in the system of
polynomial equations (V.2.5) ke a function of only one
arguaent, i.e., involve only one of the dimensions in the
underlying object space, ve get a simfler model. Note,
however, the implications of this wmodel. In the general
polynomial model, we allow any polynomial rotational distor-
tion betwveen the underlying space and the utility space to
be modelled. It is even possible for the underlying space
to be collapsed into a utility space of fewer dimensions (or
expanded into more dimensions). This second submodel
assumes a rotational restriction. It is assumed that the
dimensions of the utility space are the same as those for
the underlying object space and it is merely the scale on

each axis that is distorted.

These two submodels are conceptually interesting in
certain situations but they do not address the major
probleas in the application of the polynomial model. The
problems of correctness of the model and goodness of fit

still remain.
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Chapter VI

Section 1. Introduction

In this chapter we will present two axiomatizations of
conditional subjective expected wutility and use them to
justify the method of multiattribute utility assessment that
is the goal of this paper. The emphasis on conditional sub-
jective expected utility theory is in response to criticisms
of the axiomatizations of von Neumann and Morgenstern and of
Savage, presented in Chapter II, which are both uncon-

ditional theories.

The unconditional theories define as primitive elements
sets that represent consequences, acts, and states of the
world. It 1is assumed that the states cf the world and the
relationships between them and the consequences are unaffec-
ted by the choice of the acts. In other words, it |is
assumed that one and only one state of the world is true and
this fact is wunalterable by the choice of an act by the

decision maker.

There have been several criticism of this assumption in

the literature (Luce and Krantz, 1971; Fishburn, 1973c;
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Fisnburn, 1974; Balch, 1974; Balch and Fishburn, 1974).
Briefly, these objections center on the unconditional nature
of the theory (i.e., that the choice of act for implementa-
tion can have no effect on the state of the world obtained)
and the proposition of fconstant acts?® (i.e., acts that
produce the same consequence regardless of the true state of

the world).

In response to these objections, two theories of con-
ditional subjective expected utility have been developed
{Luce and Krantz, 1971; Fishburn, 1973c). These two
axiomatizations are presented here for reference, the Luce
and Krantz axiomatization in Section 2 and the Fishburn

axiomatization in Section 3.

In the Luce and Krantz theory, the prisitive elements
are events, or states of the world, consequences, and acts,
wvhich are functions from the set of events into the set of
consequences. The acts are conditional, on subsets of the
set of events, and the theory provides for a measurable
utility and conditional subjective probabilities on these
conditional acts. The authors prove an additional theorem
that provides a measurable utility on the set of
consequences. The application of the theory is restricted,
however, to those sets that include all subsets and finite

unions of disjoint subsets of the set of events of interest.

N
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In the Fishburn theory, there 1s nc such restriction on
the set of events, but the set of acts is more restrictive,
being a "mixture set"™ of all simple acts, those that obtain
a single consequence (Krantz and Luce, 1974). It 1is this
enrichment of the set of available acts that allows the
theory to be applied to a less restrictive set of states of

the worlad.

In Section 4, these theories are discussed in terms of
their applicability to the situation under consideration 1in
this paper, namely multiattribute utility assessment. Of
particular interest is the manner 1in which each of the
theories avoids 1nvolving consequences. Although each
theory may be formulated in terms of consequences =-- Luce
4nd Krantz (1971) prove a secondary theorem and Fishburn's
act-state pairs (1973c) may be called <consequences without
loss of generality (Pratt, 1974) =-- bcth avoia bringing
consequences into the theory at an axiomatic level where
they might provide intuitive appeal. In this regard, com-
ments by Jeffrey (1974) are cited that @potivate a "neu"

axiomatization of conditional subjective expected utility.

In addition, these formulations allcw us to address the
protlem of structure in a multiattribute situation. We show
that wuniattribute utility functions may be constructed that

are conditional expected utilities of the overall  utility
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function. We also show that the Novick and Lindley fixed-
state utility assessment procedure may be viewed as a con-
ditional subjective expected utility procedure. If we view
the utility function as if it were a probability measure,

some interesting interpretations develop.

Section 2. The Luce and Krantz Axiomatization

In this section, we present an axiomatization that
leads to a simultaneous measurement of utility and subjec-
tive probability (Luce and Krantz, 1971). The axioms are
similar in nature to those in the previously presented
axiomatizations, and the resulting representation is similar
though specifically formulated for the application to

utility assessment.

The intention of the axiomatization is to provide a
theoretical measurement foundation for utility assessment
formulated in a more realistic way than the axiomatizations
of wutility developed by von Neumann and Morgenstern (19u47)
and by Savage (1954). The difficulty with these two
previous axiomatizations, according to Luce and Krantz, is
their representation of utility unconditionally.
Specifically, both previous axiomatizations of utility

require that the states of nature can no way be altered by




the acts chosen by the decision maker. In most cases, Luce
and Krantz argue, the decisions that we as decision makers
consider limit the dowmain of possitle events, thus altering
our perceived subjective probability cf the occurrences of
those events as well as our perceived utilities for the

outconmes.

The axioms proposed by Luce and hrantz are presented in
Table vI.2.1. As stated by the above authcrs:
They are mostly not transparent at ftirst sight,
but they become reasonably compelling as normative
principles once their meanings are grasged.
Axioms 1, 8, and 9 are structural, qJuaranteeing that the

sets under consideration are sufficiently rich to provide a

basis for applying the other axioms and tc insure a soluticn

to certain equivalence relations. The other axioms, Z
thrcugh 7, are descrired as "rational ©preference behavior
axicms" by Luce and Krantz. These are similar to axioms in

other axiomatizations of utility that are normative (what

onc¢ should do) rather than descriptive (what one does).

Axiom 1 insures ths«t all possible combinations of con-
ditional decisions are represented in the set of decisions
under consideration. Note that some of these may be not
meaningful. As Luce and Krantz state:

To apply our theory to real-world decisions, we

must therefore suppose that "natural" decisions,

such as fﬁ and g,. (in Table VI.2.1), are enriched
by certain artificial ones.... The measurer must
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Table VI.2.1
The Luce-Krantz Axiomatization
(Luce and Krantz 1971)
Let L be an algebra of events (i. e., closed under

unions and compliments) of subsets of a given set X of pos-
sible chance events; let N be null events, a subset of ¢ ,
including at least the empty set g, that is characterized by
the axioms and that will be the events assigned probability
zero in the representation; let ( be consequences, an
arbitrary set; let U be conditional decisions, a set of
functions from non-null events (t-N) into (C; and let > be a

preference ordering, a binary relaticn over 0.

Definition 1: < X, £, N, C, D, > > 1is a conditicnal

decision structure if for all A, B in {-N, R, S, in t , and

i RS S .
all fA' iA' fAUB' fAUR' I v gB, hA, kB in D, the following

nine axioms are satisfied.

Axiom 1: (1) if AN B = g, then fA 0 g

_____ p is in D ; (11) if

B ¢ A, then fA is restricted to B in 7.

Axiom 2: > is a weak ordering of D.

Axiom 3: If AN B =g and fA v gpe then fA Ugy~ £, .
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Table ¥I.2.1

(continued)

4:  If AN B =g, then £°> £ if and only if £' U g
o U9
2 QA U 95 -

. _ A : 1 Lo K

5: If A 1B =3, ?A v 95 i=1, 2, 3, 4, g\ U kB . %\

U . dhlU lmh2u2th f:‘u l>f4U£’f
ky, and hy U gy , U 9o then £ 0 ko 2 £, U k' 1

. 1 3 2 4
and only if hy U 9y 2 b U g,

6: If ANB=08, N is a sequence of consecutive
: 1 2 1 1 i+l 2 .
integers, not Ip ™ Y3 and ﬁ\ U 9, ~ §\ 0 %, for 1,

i+1 in N, then either N is infinite or {ﬁs | 1 is in N

is unbounded.

1: (i) If R i1s in N and ScR, then S is in \;
{ii) R is in N if and only if, for all £_ . in o, f. .
AUR AUR
~ fA, wvhere fA is the restriction of fAUR to A.
8: (1) { -N contains at least three pairwise disjoint

elements; (ii) o / + contains at least twe distinct

equivalence classes.

9: (i) If A and g, are given, then there exists h\ in »
. . _ 1
for which h, v gy 5 (ii) if A 1 B = ¢ and h' U g, 2
2 . .
fAUB 2 hA ] gB, then there exists hA in > such that hA
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be prepared to present for serious consideration
by the decision maker some rather artificial
alternatives, and the decision wmaker mwmust be
induced to make realistic decisions among then.
The wusual technique 1is to pose hypothetical
questions.

Note that this 1is the practice of the Novick and Lindley

procedure described in Chapter II.

Axiom 2 is analogous to axicws in the Luce-Tukey, the
Roskies, and the Tversky systems. It means that the binary
relation > is reflexive and transitive. Axiom 3 simply
means that 1if two decisions are equivalent in preference,
then a decision that randomly provides one or the other is

equivalent to either.

Axiom G4 states that 1f one decision is at least as
preferable as another, then the preference ordering should
remain the same when both are combined with some other,
unrelated decision. Axiom 5 is the one that helps to
guarantee that the resulting wutility representation will
attain at least an interval scale of measurement by
postulating that there be no reversals in fpreference. Axiom
6 is an Archimedean axioa like those in other

axiomatizations.

Axiom 7 is concerned with the events that will have
zero probability in the resulting representation,

guaranteeing that subsets of null events are themselves null
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and that null events have no influence on non-null
decisions. Axiom 8 is another of the structural axioms,

insuring that the sets in guestion have suf:ficiently many
elements so that the axioms are applicable. The notation,
D/v, denotes the set of all equivalence classes derived fron
D. Axiom 9 is a solvability axiom similar to those in other

axiomatizations.

The primary result of the axiomatization is the follow-

ing theorem:

Theorem 1: Suppose that < ", i, ~, V', UV, 2 > is a
conditional structure in the sense of Definition
1. Then there exist real-valued functions u on ¢

and P on L such that < \, {, P > 1is a finitely
additive probability space and, for all A, B in
E-N, R in !, and £.¢ 95 in D,

(1) R is in N if and only i1f P(R) = 0;

(ii) g > 3. if and only if u(f\) > u(gB);

(iii) i* XAB =g, then ‘

u(fAUgB) = u(f‘\)P(AIAUE)H) (gij)P(BIAUB).

Moreover, P is unique and 4 is unique up to a
positive linear transformation.

It should be noted that this theorem does not assign a
utility function to the set of consequences, but to the set
of conditional decisions. Thus, as stated by Luce and
Krantz, "they do not seem to fulfill our originmal goal and
certainly they are different in this respect from all other
theorems of expected utility." In particular, these refer
to the axiomatications by von Neumann and Morgenstern and by

Savage. Another theorem is proved by Luce and Krantz that
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establishes a utility function defined on the consequences.
Luce and Krantz are also able to show that, for the finite
case, any conditional model with their representation can be
restated in an equivalent unconditional form, and vice

versa.

Section 3. The Pishburn Axiomatization

In this section we present a second axiomatization of
conditional subjective expected wutility (Fishburn, 1973c;
Fishburn, 1974). The set of states ¢t the world 1o
generalized from that of Luce and Krantz, in that there 1:
no requirement that all unions and subsets be include¢d. To
achieve the desired representation, hovever, the set ot
acts, or decisions or ganmbles, is enriched to be a "mixture

set."

A mixture set is defined as follcows (Herstein and Mil-
nor, 1953):

A set S is said to be a mixture set if for any a,
b in S and for any p we can associate another
element, which we write as pa + (1-p)b, which is
again in S, and where

1la + (1-1)a
Fa + (1-p)b

= a
= |
g{pa ¢+ (1-p)b)

a-p)b + pa,
¢+ (1-9)b = (gp)a + (1-gp) b,

for all a, b i1n S and all g, p-.
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The resulting representation 1is not substantially different
trom that of Luce 4and Krantz (1974). Cne representation
does not dominate the other so that the cholce Bust Le
dependent on the situation or sets under consideration or

those likely to occur.

Table VI.J}.1 presents the axicms of the Fashburn
system. They are fully discussed in the criginal presenta-
tion (Pishburn, 1973¢) and so will not be discussed 1in
detai]l here. The Fishhuin paper 1lco cites situdations and
consequences of the taillure ot certain of the axioms. The
implications of each of the axioms are briefly presented

below.

Axiom (A1) means that the preference relation > 1is
isysmetric (a>b -> not b>a) and negatively transitive (not

a>b £ not b>c -» not ad>c). Defining "indifterence® (.) as

ab if and only if not a>b & nct b a

and "preference-indifference” (>) as

a>b 1t and only if ad>b or awvb,

it follows that ~ 15 an equlivalence relation (teflexive,

sysmetric, and transitive) and > is transitive and comjlete.

Axiom (A2) 1is a continuity axios, similar 1n ilntent to

the Archimedean axioms of the systems jresented 1n previcu:.

L

4




108
Table ¥I.3.1
The Fishburn Axiomatization
{(Fishburn, 1973c¢)
Definition 1. { x., t, > ) 1s an ordered algebraic mixture ‘L
system if and only if ¥ is a mixture set, | is a Boolean

algebra of the set S of states of the world, > is a binary
relation on \x{' (where (' =(¢- g} and, for all A, B, C 1in

v and x, v, 2z, ¥ in Y:

(A1)

(A2)

(A3)
(a4)
(R5)
(A6)

(37)

vhere xA, for x in ¥ and A in {*, is written for the ordered

pair

> is a weak order,

{p: (px+(1-p)y)A > zB} and .p: 2B > (px+(1-p)y))A:
are closed (in the relative usual topology for (0,1)),
XA ~» 2B € yA B -> (.5x+.5y)A . (.5z+.5w)E,

ANYB =¢ & xA > xB -> xA > x(AUE) > xB,

x > y for some x, y in ¥,

ANYB = ¢g-> xA > xP & yB > yA for some x, y in ',

If A, B, C are mutually disjoint and if there is an x

in X such that xA . xB, then there is a y in such

that exactly two of yA, yB, and yC are indifferent.

(x,A) in ¥x!* and xS, for x in \, is abktreviated x.
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Table ¥1.3.1

{continued)

Theorem 1: Suppose that (x, [, >) is an ordered algebraic
mixture systea. Then there is a real-valued function u on
“x!' and a finitely-additive probability measure P on- - A
5 B in t: for each A in (' such that (i) xA > yB if and
only if u(xA) > u(yB) for all xA, YF in x{'; (ii) u(.2) is

linear (as a function on 1) for each A in! '; (iii) P.(B) =

P. (B) P, (A) vhenever A ¢ B c C, A in {, and B, C in {'; (iv)

- : \
u(x (AUB)) PAUB(A)u(xA) + EAUB(B)u(xE) vhenever x in X, &,
B in (', and A 1 B = . Moreover, a real-valued function v

on Xx[' apd finitely-additive probability measures Q, on tA
FAY

it B: B in t} for each A in { ' satisfy (i) through {(iv) in

place of u and the P\ when these satisfy (i) through (iv) it

and only if v is a positive linear transtormation of u (if

and only if there are numbers a > 0 and t such that v(xA) =

au (xA) + b for all xA in +x!') and Q\ = P for each A in i'.

[




chapters. One implication of this axiom is that the set 14
empty only if 2B is not preferred (is preferred) to both xA

and yA.

Axionm {A3) 1is crucial to provide the structure needed
to derive the desired representation. It is a weak version
of the sure-thing axiom found in other systems. Axiom (AU)
is an averaqging axiom that acts 1n the alignment of the
utility functions in the resulting representation so that
the utilities of all the elements will have the same, com-
parable scale. These two axiowms may be difficult to accept
on face value. Axiom (A3) is not very intuitively
appealing, and Axiom (A4), though intuitively appealing, may

be unacceptable because of the possible value of certainty.

Axiom (AS) simply states that there are at least two
distinct elements, in terms of preference, in the set ‘', and
Axiom (A6) states that the set * 1s rich enough so that
state A 1is preferred to state B for one act but the reverse
15 true for at least one other act. The implication of this
latter axiom is that no state dominates any other state in

preference.

Axiom (A7) is required toc guarantee that the
Frobabtilities in the reyresentation are additive. Fishbutn
gives d4an example where (AV) through (A0) are satistied buat

(A7) fails and the protalbilities dare not additive.

*




Section 4. Conditional Expected Utility Assesssment

The difference between the Fishburn axicmatization and
the Luce-Krantz axiomatization was described as follows
(Krantz and Luce, 1974, in comment to Balch and Fishburn,
1974y ¢

It seems to us that the chief difference between
the two systems lies right at this pcint: the LK
system imposes great —richness on 1its outcosme
structure, but can get on with as few as three
atomic events (or even two, with a little extra
effort) ; the BF system can deal with any set of
basic action alternatives, tbtut wutilizes the
elaborate mixture-space apparatus. Presumably the
latter apparatus could be made more gualitative by
moving in the direction of the Savage axioms; but
in any case, what 1is required is a very fine-
grained structure of events or probabilities. The
essence of this difference is familiar from the
contrast between the utility measurement procedure
of (Davidson, Suppes, and Siegel (1957) and
Mosteller and Noyee (1851)). Dces one best
measure utility by trading off value and
probability or by trading off value against value?
The latter has more face validity and is nmore
easily yeneralized to situations where the subjec-
tive probabilities are not well tehaved; it is the
method of Davidson et al. and of the LK systenm.
The former method gets along with a mwmuch simpler
structure of Dbasic options; it is the method ot
von Neumann and Morgenstern, Mosteller and Nogee,
Savage, and others, and is the basis of the BP
systenm.

Both systems are usable in justifying the utility assessment
procedure advocated by Rovick and Lindley, and adopted for
use in this paper. The Fishburn axiomatization is perhaps a
more direct Jjustification because of its common ties with

the works of von Neumann and Morgenstera and of Savage.

AL
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The Luce and Krantz axiomatization provides a
theoretical measurement foundation for the utility assess-
ment procedure advocated by Novick and Lindley as follovs.
The Novick-Lindley procedure selects three states, assuming
that they are ordered, and equates the expected utility of a
gamble, involving the most preferred of the three states and
the least preferred, with the utility of the third, middle
preferred state. Although the equation {(actually a systenm
of such equations) can be sclved unconditicnally, it is con-
venient to view each equation conditionally. If we restrict
our attention to the three states, and recalling that the
utility function 1is unique only up to a positive linear
transformation, we may assume conditionally that the least
preferred state of the three has a utility of zero and the
most preferred state has a utility of one. Thus, the con-
ditional utility of the the ¢third state, of middle
preference, is equal to the (conditional) probability of the

gamble.

In the Luce-Krantz axiomatization, a single state can
be represented as a constant Jecisicn and a gamble, alsc a
decision, as a finite union of constant decisions. Thus we

can formulate the Novick-Lindley equations in terms of a

gamble and a constant decision as follows: let A - Teat
preferred  otate , B = dstate of middle jreterence , oand
most preterred state o Theocrem 1oyt the Luce-Fran*s nyoten

g
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allovs us to conceive of the utility of the gamble involving
the most and the least preferred states, a finite randonm
union of sets A and C, as the sum of the utilities of each
cet multiplied by the subjective conditional probability of
its occurrence. Then Axioms 9 and 3 allow us to equate this
utility of the gamble to the utility of the third set B,

representing the state of middle preference.

The Fishburn axiomatization also provides a theoretical
foundation, as follows. As above, 1let A= state of least
preference'!, B={state of middle freference;, and C=/state of
most preferencel. Assuming that the axioms hold, Theorem 1

concludes that

(VI.4.1) u(w(auc)) = PAUC(A)U(WA) t P AC)u(wC)

for some w in X. Axiom (A2) guarantees that

(VI.U.2) w(AUC) = (px + (l-p)y) (AUC) ~ 2B

for some x, y, z in X. Thus, by Theorem 1 again, u(w(RUC))

= u{zB).

Since both axiom systems can adequately justify the
procedure adopted for this paper, the choice between them is
one of convenience. Given that the application of interest
(in educational selection and assignment) will likely

satisfy the axioms of both systems, we could assume hoth,
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thus providing a very stronyg theoretical base for the

elicitation procedure.

One criticism of both axiom systems is the absence of
the set of consequences in the axioms and the main theoreanms.
This 1is a minor fault, however, as both systems may be
extended or reformulated to involve the set of consequences.
Luce and Krantz (1971) state and frove a theorem that
provides wutilities on the set of consequences, as indicated
in Section 2. In Fishburn's axiomatization, the act-state
pairs can be conceived as consequences, as pointed out by
Pratt (1974). Jeffrey (1974) suggests a "holistic" approach
that includes consequences in the set of primitive elements.
Indeed, states of the world, acts, and consequences all may

be viewed as events.

Now that we have a firm theoretical justification for
the elicitation procedure of Novick and Lindley, we turn our
attention to the multiattribute situation. As in either
axiom system, let S be the set of states of the world, and

let S be multiattribute, i.e., S = Slxszx...xsk. Similarly,

et ! Poxiyxe.ox!

e “ k

for ease of dewmonstration, we will make some stronger assum-

be the Boolean algebra of the set S.

rticns than necessary, namely that each ! is an interval on
1

the real line. The extension illustrated here 135 valitd for

other types of sets (., such as suksets of the 5ot of
1
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integers, because of the abstract nature of the sets defined

in the axioms.

With these assumptions, the theorems of either systen
allow us to conclude, with suitable continuity extensions,

that
(VI.4.3) uf(g'y = ju(_u_")uP(&_"'.u') = Elulzy ']

vhere v is in L, U' is in ['Y, 9*' is in [*'*, and L'x{** = (.
0f particular interest is when (' = f; for some i. Thus we
have identified a unidimensional utility function, u(g),
which Novick (1980) has called the marginal utility function
of 2', and have related it to the multiattribute utility

function as its conditional expectation (given :'). This is

illustrated in Figure VI.4.1.

In addition to the marginal utility function, we define
the conditional utility function as
N ufe) - int  (u{e) )

(VIG ) U)o ) 5 e s SR e
sup (u(s) ¢ ) -~ int {u{n) =)
I3 == ; YR

* - . . . <
vhere 5, 3 are in f. This is simply a rescaling of ‘the
multiattribute utility function u(r) ccnditioned on _ SO
that it ranges from zero to one. This is 1illustrated 1in

Figure VI.U4.2.
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Figure V1.4.2
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The <conditional utility function is used in the Novick

and Lindley theory as follows. let .., o.. g, be three

-

i j
states ordered on preference such that u(gi)<u(gj)<u(gk).

The theory states that

(VI.4.5) U(gj) =puly,) + (1-p) u(c,)

K 5

for some p, 0 < p < 1. Then

U(‘{"j) - u(:l)
(VI.46) p= orh

X ﬁﬂ

Thus, p is the conditional utility of e given that .  1s
1

the least preferred state and is the most preferred state

S
under consideration, i.e., that u(;i)=0 and u(gk)=1.

The conditional utility function may be related to the
marginal utility function by observing that the conditional
expectation of the conditional utility function,
E(u(glg*)lg'), is equal to the rescaled marginal utility
function:

OU

u(y') -infﬁJ( L
v

=

* 8”
T 3 | a! -
(VI.4.7) E [u(ejs ))a']) SUpU(u(e)[U") T

[¢2

noting that the restrictions a' are assumed to be a subset

3 I3 *
of the restrictions g .

The three equations (VI.4.3), (VI.4.4), and (VI.4.7)
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provide a framework for the assessment of the multiattribute
utility function u{d). As the marginal and the conditional
utility functions are uniattribute utility functions, we wmay
apply the elicitation procedure of Novick and Lindley. We
may present choices between a gamble and a sure thing in any
suitable manner. The resulting system of nonlinear
equations in expected utility may be solved using any
suitable numerical method. The multiattribute utility func-
tion may then be vrecovered by applying the relationships
among it and the marginal and the conditicnal utility func-

tions displayed above.

As developed in Novick and Lindley (1978), the use of
convenient models for the wutility function and the
probability function over the states of interest can greatly
simplify the computation of expected utilities. Those
authors suggest using a cumulative distribution function for
the utilities and conjugate probability functions. This
suggestion works well in this situation. If we limit our
attention to a two-attribute situation for the purpose of

illustration, we can see that

(VI.U4.8) u(u)) ~ D ﬁ . Ol, 7 - Uzldl = ”l;
and that

vi.u.9 g Gt egentty =Pl o<y oy = ol .
( ) u(leul, G Uy 5" Pl < Uy I VTIE N P
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With conveniently chosen utility and probability functions,
the parameters of the resulting probability functions (for
the marginal and conditional utility functions) may be cal-

culated (Chen and Novick, 1981). This idea 1is developed

more fully in the next chapter.
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Section 1. Introduction

In this chapter, we outline a procedure to assess Bul-
tiattribute wutilities. Details of the procedure are
generally referenced to other chapters of this paper or to
the appendices. The sections of this chapter are divided as

follows.

In this section, the paradigm for the wmultiattribute
utility assessment 1is defined and the parameters of the
problem are identified. The discussicn 1is brief as the
problem has been amply discussed in Chapters I and II of
this paper. The design of the computer wodules of the
implementaton of the procedure developed in this paper is
discussed in this and subsequent sections. The utility
assessaent procedure is presented in three phases:

elicitation, coherence, and modelling.

In Section 2, the elicitation phase 1is discussed.
Agjain, the discussion is brief because the procedures

involved have been presented in detail elsewvhere; for exam-

ple, in Chapter II of this pager. Two elicitation
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procedures are implemented.

In the Conditional Coherence Procedure, a set of gao-
bles for a conditional set of attributes is presented; the
decision maker may then review and alter the indifference
probability for any gamble in the conditional set before
another <conditional set 1is presentead. Note that this
procedure 1is analogous to the Global Coherence Procedure,

otherwise known as the Least-Squares Coherence Procedure

(Novick, Hamer, Libby, Chen, and Woodwvorth, 1980).

L X

In the Regional Coherence Procedure, the decision maker
is presented with additional coherence gambles after each
pair of gambles from a conditional set. The procedure 1is

like the procedure of the same name currently in the CADA

oy

e

Monitor (Novick, Hamer, Libby, Chen, and Woodworth, 1980).

In addition, two entry formats are available (Novick,

At et

1980; Novick, Turner, and Novick, 1981). In one, the

decision maker is presented with a structured, dynamic
sequence of probabilities for each gamble triplet and
responds vhether the gamble is preferred, the sure thing is
preferred, or the <choice 1is indifferent. In the other
format, the decision maker is presented with the same choice ‘
between a gamble and a sure thing and responds with the

probability that would make the choice indifferent.
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In Section 3, the coherence phase 1s discussed. The
gamble triplets are presented along with the elicited
indifference probabilities. If some e¢stimation has taken
place, the estimated, coherent 1indifference probatilities
are presented, as well, along with the estimates of the
parameters of the model <chosen for the utilities. The
decision maker may modify or delete any of the gaamble
triplets from the aodelling phase. The decision maker may
also request that additional gamble triplets be presented
for coherence checking. This phase 1is entered after the
modelling phase for acceptance of the estimates by the

decision maker.

In Section 4, the modelling phase is discussed. A non-
linear least-squares algorithm, based on the Newton-Raphson
method, is used to estimate the parameters of the
probability distribution chosen to model the utilities of
the problem. Three wutility models are implemented: the
multivariate normal cumulative distribution function; the
Dirichlet «cumulative distribution function; and the mul-
tivariate generalized beta cumulative distribution function.
The properties and the derivation of this latter distribu-
tion are presented in Appendix A; the former two
distributions are well-known. The necessary derivatives of

the three distributions are presented in Appendix B.

i
|
|
|
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The scaling transformations of the coherence phase are
proposed to be static and are therefore incorporated direc-
tly 1into the wmodelliny phase. The mcdelling may be fper-
formed 1in one of three metrics: the wmetric of the
indifference probabilities; the logodds metric; and the arc-
sine metric. The uses of the logodds and the arcsine
metrics are wvwell-known in the analysis and estismation of
probabilities and proportions (e.g., Ncvick and Jackson,
1974) . The necessary derivatives for these transformations

are also presented in Appendix B.

Once the estimates have been calculated, the procedurc
returns to the coherence phase, where the decision maker may
accept the estimates or wmodify the data for further
estimation. A general discussion of the entire procedure 1is

presented in Section 5.

In general, the problem may be defined as follows. C(ne
has a multiattribute decision to make and desires to asses:s
the utility over this multidimensional space. We will let
denote the attribute vector. We will assume that the

attribute space 1is continuous, or at least that it may be

adequately approximated bty a continuous space. (This assuam-
ption is imposed by the choice of w®models. If a suitable
multivariate discrete probability function could be

postulated, it could be fit into this framevork with only a

e A A
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little modification in the model estimation phase.)

The elicitation algorithe requires that we present ganm-
bles involving specific points within the attribute space;
therefore, the decision wmaker aust first be asked to

determine these points. Several restricticns are useful.

First, the procedure is simplified if subsets of the
points may be chosen so that the subsets are convenient con-
ditional sets. The =subsets are «convenient 1if the con-
ditional wodels for the subsets are simple models. Since we
are modeling the utility functions by cumulative distribu-
tion functions, this convenience criterion requires that the
conditional wmodels be tractable cumulative distribution
functions. Considering the ®models that we have selected,
the most convenient set of points are those of a rectangular
hypergrid. This allows the subsets tc be states that differ
in only one dimension, and the conditional models to be sim-

ple cumulative distribution functions,.

This restriction also allows the =<implest wethod for
selecting the points to be used. The decision mikel melely
getermines the number of dimensions in the problem and then
selects several points alonj each dimensiou. These poants

determine the rectangnlar hyperjrid.

This 1is not a substantial restricticn. Although 1t g
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reasonable that some of the resulting wmultidimensional
points may be improbable or difficult for the decision maker
to value, the model for the wutility function does not
require that every point in the hypergrid be involved in the
elicitation phase. This is an advantage of the functional
nodel as opposed to the point estimation model, such as the
least-squares procedure of the CADA Monitcr (Novick, Hamer,
Libby, Chen, and Woodworth, 1980). If a particular Fpoint
poses a difficulty, the decision maker may simply choose to

not judge any gamble triple that involves it.

Second, we requiire that the utility tunction Le
monotonically increasing in all dimensions. Agjain, this 1is
a convenience for our choice of models; indeed, the w@odels
1apose this <condition. It 1S, hcwevel, a re-asonahle
restriction. In many cases where this restriction 15 not

wmet, the problese may be redefined.

FPor example, in a one-dimensional prchblem in which the
utility 1s high 1in the middle of the attribute «<pdace and
tills  off towatrds toth eoxtremes, such as 1n some medical

sotuations in which bhoth a hijh drsaqge and a low dosage have

Jow vitue, the atrrthate 7pace mav e "folde A" atcur th
L4 N
rodal coine b cont e,
“hard, W teoonme thar the grilaty tatorayon Poutode
(Novick and Lindlev, 1979) ) noty 4bave g telow, vl toat
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the decision maker can select points that are of essentially
ainimum and maximum value. Thus we can assume, Without loss

of generality that the utility function ranges from 0 to 1.

This 1s in effect defining a conditional utility func-
tion. The point where all dimensions have the least value
is assumed to have value 0, and the point where all
dimensions have the greatest value is assumed to have value
7. With some additional information or assumptions, we
could unconditionalize the re:nlting wutility function; we

¥ill not, however, discuss this 1oint further.

Section 2. The EBlicitation Phase

The e€licitation phase for the multiattribute atility
assessBent 1s essentially the same as was discussed in Chap-
ter II and implemented 1n the CADA-196C Monitor (Ncvick,
Hawer, Libby, Chen, ard woodworth 1980). There are two
elicitation alyorithes: the Conditicnal Ccherence Procedure
and the Regional Coherence Procedure ( Ncvick, Chuang, dand

Dekeyrel, 1979, Novick, Hamer, lLibkby, Chen, and Woodworth,

198C) . There are two entry tormat:: direct entry (of the
indifference probability) and "mends-11"  (Novick, 19usU;
Novick, Turnet, and Novick, 19¢ 1) . Ir 4addation, the

decision saker has the optioen of passingy, or not mdking, a
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judgment.

In both the elicitation algorithas, the decision maker
is presented with a sequence of gamble triples. Each triple
consists of a gamble between two peoints in the attribute
space and a "sure thing" point. The triples are chosen so
that the sure thing point 1is intermediate in utility
relative to the two points in the gamtle and so that only
one dimension 1in the attribute space 1s varying among the
three points. The goal 1is the probability of the higher-
valued point in the gamble such that the decision maker is

indifferent between the gamble and the sure thing.

For example, suppose that we have three points 1in the

attribute space, Uie g and e in order of preference. The
decision maker would be Fresented with a cheice
{hypothetically) between obtaining state v, for sure and

J
gambling on obtaining state -, with probability p or obtain-

ing state vy vith probability 1-p. Our goal is to elicit
the probability ©p such that the decision maker is

indifferent in this choice.

In the Conditional Coherence Procedure, the gamble
triples are rresented in sets, whe:e only one dimension of
the attribute space is varying in each set. The procedure
is like the 1least-squares procedure of the CADA-1980

Monitor, except that we are considering the one-dimensional,
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conditional utility function within each set. After judging
each set, the decision maker may elect to review the judg-

ments of that set and correct any errors.

The conditional sets, as they assume fixed states for
all but one attribute, are chosen so that they cover the
attribute space. The decision maker may elect to pass on
any set. Within each set, the gamble triples are chosen so
that the three states are adjacent in the dimension that 1is

varying.

For example, suppose that the decision maker has chosen
N states, 0) ¢ sees tye along a single attribute dimension
for elicitation. The decision maker would be presented with
a choice between a state 01 for sure and a gamble involving
states ¢, and Ui 1 » where 1 1s some integer between 1 and

The Regional Coherence Procedure differs only slightly
from the above. As in the Conditional Coherence Procedure,
the gamble triples are presented in conditional sets, where
the states of all but one attribute are fixed. Again, the

adjacent gamble triples are used.

The triples are presented 1in pairs, with each palr

involving only four states. After each pair ot adjacent

triples is presented, the two other triples from the four
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states are presented with the implied 1indifference

probabilities. For exarple, let Oa, U %:, and - be four

b’ d
adjacent states in a uniattribute assessment. The decision

maker would be presented first with the two choices:

for sure gamble
F 1-p
2. b t
© d b
and might respond with ©probabilities P, and P,, Trespec-
tively, that make the choice indifferent.
Based on this information, <coherent indifference

probabilities may be calculated for two other choices:

for sure gamble
F 1-p

3. Q o M,
4. k\b t)d ‘\«a
c d a

This is accomplished by examwining the conditional utility
function over those four states. Since two utilities are
fixed (at 0 and 1), only two gamble triples are needed to
determine the <conditional wuwtility function. The decision
maker may then accept the implied indifference probabilities
or correct any of them. When they are acceptable, another
pair of adjacent triples from the same conditional set is

presented.

The above procedure is like the procedure of the sawme

name in the CADA-1980 Monitor. When all the pairs from cune
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conditional set have been presented, the decision maker wmay

review the judgments and proceed on to the next set.

The entry formats are availlable in both of the above
procedures. The direct entry format allcws the decision
maker to specify the 1indifference probability for the
presented gamble triple. The "ends-in"™ format allows the
decision wmaker to respond with a preference for the sure
thing, a preference for the gamble, or indifference. When
the decision maker is indifferent, anocther gamble triple is

presented.

For example, suppose that the decision maker has chosen

., and . . 1in order of ©preference, for

states T .

Yi-1e
elicitation in a unijiattribute decision problem. In the
direct entry format, the decision maker would be presented

with the following choice:

For Sure Gamble F that makes
F 1-p you indifferent

. e - e
1 1+] -1 )
The decision maker would enter ‘the probatility for the gam-
ble that would make the choice between the gamble and the

for-sure state indifferent.

In the “ends-in" format, ¢the decision maker 1is
presented with a probability for the gamble as well as the

gamble triple. The probability is initially either 0.1 or
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0.9. For example, the decision maker wight be presented

vith the following choice:

----------------------------------- Option:

b 1

I E Y41 I 0. Indifferent
I For sure o, 1 Gamble I 1. Por sure

1 1 b ST I 2. Gamble

I I 3. Restart

- - v - - e = e . A e P S G = W . — - =

The response of the decision maker determines whether the
indifference probability is higher than, 1lower than, or
equal to the presented probability. The next probability to
be presented 1is calculated to be near the opposite end of

the resulting interval.

For example, suppose that the presented probability is
0.1 and the decision maker prefers the sure thing. Thus, ve
know that the indifference probability is in the interval
(0.1,1.0). The next probability is calculated to be near
the end of the interval opposite to the presented
probability, or 0.9. If the decision maker then prefers the
gamble, then we know that the indifference probability is in
the interval (0.1,0.9). This sequence continues until the
decision maker responds with indifference or until the
interval becomes insignificantly small; this threshold 1is
set to 0.05. In this latter case, the middle of the inter-

val is selected.
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In both options, the decision maker may avoid judging
the gamble triple. In the "ends-in" option, the decision
maker may also elect to begin the guestioning for the

current gamble triple again.

Section 3. The Coherence Phase

In actuality, the previous section described the itera-
tion between the elicitation phase and the coherence phase.
In the Conditional Coherence Procedure, coherence may be
checked after each conditional set of gamble triples is
presented. In general, however, there will be insufficient
data to make initial utility estimates; thus, the coherence
checking involves only the review of the assessed

indifference probabilities.

In the Regional Coherence Procedure, coherence 1is chec-
ked after each pair of gamble triples is presented. There
is generally insufficient data to make utility estimates for
the entire conditional set, but it is possible to calculate

the indifference probabilities for gambles in the region.

The rest of the multiattribute wutility assessment
procedure is primarily an iteration Letween the coherence

phase and the modelling phase. After the parameters of the
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model for the utility function have been estimated, the
implied indifference probabilities are presented along with
the assessed indifference probabilities. The decision maker
nay decide to accept the fit, modify any of the assessed
indifference probabilities, or delete any of the gamble

triples from consideration.

The 1indifference probabilities, both assessed and
implied, are presented by conditional set. The difference
between the two, in the selected metric, is shown, as are

the states involved in the gamble triple.

Optionally, the decision maker may view the estimates
of the parameters of the chosen model, the <calculated
utilities of selected points in the attribute space, or a
grarh of the utility function. The decision maker may also
view the implied indifference probabilities of gambles not

used in the modelling phase.

If there are any modifications to the set of ganmble
triples and associated indifference ©probabilities, the
modelling phase is entered again. This iteration continues
until the utility function 1is acceptable to the decision

maker.
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Section 4. The Modelling Phase

The modelling phase is an iterative, non-linear Jleast-

squares algorithm. The objective function
. -2
(VII.4. 1) F = L{m(py) - mipy]

is the sum of squared deviations of the assessed
indifference probabilities from the implied indifference
probabilities in the chosen metric. The algorithm attempts
to find the minimum of equation (VII.4.1) with respect to
the parameters of the chosen model for the utilities. There

are three metrics and three models froas which to chose.

The problem is to solve for the roots of the system of
first-order derivatives of equation (VII.Uu.1). The Newton-
Raphson method 1is used because it is stable and the neces-
sary second-order derivatives are algebraically obtainable
(although extremely complex). The new parameter estimates

at each iteration are calculated by

vIii.u.2 = n. - H.q.
( ) di+1 i ngl

where oy is the vector of parameter estimates at iteration

i, g is the gradient vector, the first derivatives, and H,

i
is the Hessian matrix, the inverse of the matrix of second-
order derivatives. The gradient vector and the Hessian

matrix of equation (VII.4.1) are presented in Appendix B.
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The calculations of the Hessian matrix and the gradient

vector are tedious and time-consuming. Therefore, a
subiteration is also used. The correction of equation

(VII.4.2) is applied until the winimum is overshot; this

last correction is then rescinded. The correction 1is
repeatedly halved, and applied (unless it overshoots the

minimum), until the correction is negligible (on the order ;

of 0.00001). The iteration continues with the recalculation
of the gradient vector and the Hessian matrix. The itera-
tion terminates when the sum of squared deviations differs
from that of the previous iteration by a negligible amount

(on the order of 0.00001).

Checks are made to insure that the farameter estimates

s

remain within valid boundaries. If they exceed the boun-
daries, the <correction 1is rescinded and halved, and the
iteration continues. Note that the models insure that the

utilities are monotone, so0 this need not be checked. To

¥R

protect against a very slow convergence, the iterations are
presented in sets of ten; the decision maker may terminate

the estimation phase at the end of any set.

One additional problem w®ay arise. If the  utility

estimates become too <close, the numerical algorithms may

become unstable. This may be observed by examining the

derivatives used to calculate the improvements in equation !




137

(YIXI.4.2). If the utility estimates wused in any gaable
triple to calculate the derivatives become essentially equal
(e.g., within .03), that gamble triple is not used in that

iteration of the modelling phase.

The metrics that are available are the indifference
probability metric, the logodds metric, and the arcsine-
square-root metric. The indifference r[probability nwmetric

implies the identity transformation:
(VII.4.3) m{p) = p .
The logodds metric

(VII.u.8)  mip) = loy (1%3>

and the arcsine-square-rcot metric
(VII.4.S9) m(p) = arcsin (Vp )

are wWwidely wused in Educational and Psychological research
(Novick and Jackson, 1974) for transforming probabilities to
obtain well-behaved quantities. The sensitivity of the
solution to these metrics has been researched (Mayekawa,
1981) and found to be insignificant. They are made
available for completeness. The necessary derivatives of

these transformations are presented 1in Appendix B.

The three models that are d4vailable are three mul-




tivariate cumulative distribution functions: the mul-
tivariate normal, the Dirichlet, and the multivariatec
generalized beta. The normal and the Dirichlet
distributions are vell-known. Their univariate

counterparts, the univariate normal and the standard beta
distributions, have been used to model uniattribute utility
functions ( Novick and Lindley, 1980; Ncvick, Hamer, Libby,

Chen, and Woodworth, 1980; Chen and Novick, 1981).

The generalized beta distributicn vas developed
specifically for this application. The marginal
distributions reproduce the same functional form, as do the
conditional distributions with all but one dimension fixed.
The univariate counterpart is a three-parameter beta-like
distribution. The standard beta distribution can be shown
to be a special case. The derivation of this distribution,
as well as that of a companion distribution, are presented

in Appendix A.

Because of the theory of conditional expected utility
and the modelling of the utilities by cumulative distribu-
tion functions, we find the estimation may be greatly sim-
plified. We need not work directly with the multivarijate
cumulative distribution function. By defining the «con-
ditional state sets as we have, we need cnly work with the

corresponding conditional utility functions.

PP
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Each implied probability pl)k in equation (VII.u.1) 1o
calculated as a conditional utility, assuming that the three
states in the gaable triple are all that matter. The Cal-
culation requires a utility for each state,

an ‘) - u(di)

u(f'k) - u(vl.»

(VII.U.6) Pi
but the utilities may be from any conditicnal utility func-
tion. They may be from the multiattribute utility function
(every utility function is conditional). They may also be
from the «conditional utility function over the conditional
set of states to which the gamble triple belongs. It 1is

this latter approach that we take here.

Because of the manner in which we have defined our con-
ditional set of states, these conditional utility functions
are uniattribute. Because of the models that we have chosen
to use, they are univariate <cumulative distribution func-
tions. The parameters of these conditional models are func-
tions of the parameters of the multiattribute model. Thus,
ve may find the estimates of the parameters of the mwmultiat-
tribute utility function directly using this least-squares
procedure. The necessary first- and second-order

derivatives of the three models are presented in Appendix B.
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Thi:  apptoach  assuden  that the attillbate:s  we have
cbiserved are the attritutes wath which we sheuld ke concer-
tend . It mdy be they Care that Sulointelent lles asiilhy sODe ﬁ
AT AT e, dc o Lliee , 1L tas omaltl TiEe LD hal 1ttt |
face., For example, Lhoassensang o utalatien over claduate
Record Fxamination —coles f0I 1 jraduate sohaol aoCeptalios
dJecision, 1t may e that we dle concelied more Witno the suo
Ot the verlal and juantitative soores than with  the vntite 1
tv -dimensional space.
The approyach  an this later cace 2o connyderal ly oot
coaplicated than cim: le gl Jinalization. It we aie  conced -
ned with ll1ieat transforaation:, the bl ®a, or ¢t 1 tiaty
tyon would be a4 convenient torm o1 1nvestigating thie typ:
&——‘__n.__
N it —
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of dimension reducticn because linear transformations
reproduce the same  functional form. We «could determine

other suitable distributions for known transformations, as
vell. The difficulty arises when we are nct willing or able

to specify the functional form of the transformation.

Some of the usual applications for the multiattribute
utility assessment procedure may be suitable for the above
type of analysis. Suppose that we have an attribute to be
used 1n  a  decision. In a decision with risk, we will not
knovw the value of this attribute when we w@ust make the
decision; we may, however, have a predicticn equation for it
us1ng  several avallable measures. For exaomple, we may wish
to decide to accept or treject a4 graduate school applicant
based on first-year grades  predicted by verbal and

quantitative Graduate Record Examinaticn scores.

If the prrediction equation 1s linear, as  they usually
are, and 1f we ure satistied with 4 cumulative normal
distribution function wmodel for the utilities over the
attribute of first-year jrades, we <heculd be able to
determine a two-dimensiconal utilaity tuncticn over the GUF
sCores. This line of research 15 tevond the scope of this
raper and is mentioned here only to indicate directions that

1t may take. It will be investigated in 3 separate study.

e e aea
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Appendix A The Generalized Peta and F Distributions
Section 1. 1Introduction
In developing the wmultiattribute utility function

analysis based on cumulative distribution functions, 1t was
necessary to derive a new probability density function cf
multiple dimensions. It may be that the functions presented
here are tvwo of the "many possible forms that are not in use
at present and are not likely to have useful applications“

(Johnson and Kotz, 1972).

In the followvwing sections, two wmultivariate probability
functions are derived. They are both based cn
generalizations of common distributions, namely the beta
distribution and Snedecor's F distritution, and they are
sinmple transformations of each other. The multivariate
generalized beta distribution is discussed in Section 2 and
the aultivariate generalized F distribution is discussed 1in

Section 3.

The moments of the generalized beta distribution are
not computable 1in closed form. Approximations wmay be cal-

culated from the moments of the generalized F distribution.
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Both the approximate wmoments of the generalized beta
distribution and the exact moments of the generalized F

distribution are presented in Section 4.

Section 2. The Generalized Beta Distribution

The generalized beta distribution is a simple extension
trom the common beta distribution. It uses general gamma
random variates instead of the <chi-square random variates

used in the derivation of the common keta distribution.

The impetus for the generalized keta distribution is as
follows. For a model of a multiattribute utility function,
ve wanted a cumulative distribution functicen that had the
same degree of flexibility in form that the beta distribu-
tion provided. Although the Dirichlet distribution 1is a
multivariate generalization of the beta distribution, it has
the restriction to a lower-dimensional simplex that is

undesirable in some cases.

In particular, ve wanted a multivariate distribution
having positive probability on the full (0,1) hypercube,
marginal distributions that reprcduce the Same
distributional form, and "nice® conditicnal distributions.

We wvere looking for a wmultivariate distribution whose
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univariate wmarginal distributions were beta distributions
and which had some sort of standardized univariate con-
ditional distributions that were beta distributions, such
like we have in the Dirichlet distributicn and the normal

distribution.

He discovered a multivariate distribution wWith
reproducing marginal distributions, univariate marginal
distributions that are a generalization of the ‘Leta

distribution, and univariate conditional distributions that
are the same generalization of the beta distributicn. We
are calling this distribution a multivariate generalized

beta distribution of the first kind.

let X xl’ .oy xr be distributed as independent gamma

0'
random variates with parameters xi and . , 1 =20, ..., r,
respectively. The joint distribution of XO, Xl' ceee X 1s
given by
J 1 : E N

(A.2-1) p(x , Xereo., x ) - ! ,..b%, . ‘l - o »i.xi A '

0 L r 1= (e.) T2 LR
Let Y = Y, and Yy =X /(1-X ) for i =1, ..., r. This

0 0 1 1 1
gives the inverse transforamation XO = YO, and X =
1

quh/(ﬂ*Yi) for 1 = 1, ce., I. The Jacobian for this

distribution is given by
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yl y2 yr
2.2 J[(X>Y) = 1
Yo r ¢ -
... 0 = To(l-y )
0 (l—yl)z 0 Y 1:1( Y,
0 6 0 yO
(1-y_) 2
r

Thus, the joint distribution of Yu' Yl' .-«, Y_is given by

"0 % a1 -sy
(A:2.3) plygr ¥yr-woyy) = wy Yo O o
r lrui\‘l yoyl\ll—l -8 /yoyls_\
* . -y
l:l ,L"(Il)<1.‘yl/) € l\l )l/
.
oyt T ey )7
20 i=1 1 i-1
r ag £ @ <Yi R
r - o
- L£L1=O"i> 0 i=1%3 Yi Yy
- r
T

l_yi/JJ:
( r r ( jl))
R ST S SRR S §
vhere iizotljtoi:l i 4 represents the

probability density function of a gamma-distributed randoum
r r yi \

fl . + 5. —_— .
12071 and », 12171 Glyi/

marginal distribution of Yy, ..., ¥  is given by

variate of parameters Thus the
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. i A.)O v Pay { y;ll_i/i Z0
: BELREY 0 1=1: 2 H“Y‘f Y
(A.2.4) ply ) oeoyy) = pon B TR A T S gy
~ :1(&!‘) - ¥ “r - 2
i py | * /Aj_\\' 4.:O Py
1=0 I + . ,\: b
(0 Ti=tTi\l-y L/l

(o R
(A.2.5) plyqr -,y ) = 20 1/ 1=l i1 L

\17Yy)
Y 2t Py
T 83 . 1
. 1 Y 1=0"1
1= [l+ Lzl)\i(f—l \—\‘
where \i = Bi/ﬁo.
To find marginal distributions, noting that

”(YL/(1'Y1))/DY1 = (1—Yif2 and integrating by parts, we

find
(l
(A.2.6) p(yl,...,yr_l) =) p(yl,...,yr) Y,
/. ‘/IO
- \ 0.1 .
. 2.
_ o \ifoty) rlllf‘i(_yl \ <J~_\
EPTRE e R Y -y,
1=0 1 5
1 /[ Y \11’-1 1
s [$3 . O . \ 3
* ,Xlri"frjv <I_le_ 7
J R
Or r ( YT 1=0 1
T+, a, le—=—
i=1"1 1—y],
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. .
1=0"1

wvhere

I
1 Y

Xi (l—y )]
1 i

Therefore, the marginal distribution is given by

r-1 r-11[. a, Y. Vi*-l 2
(A.2.7) plyyr-er Yo q)= TAIZ0"3) 4=1 0 Yy rI-y~ J

r-1 r r-1 v. oo
; 145, T, i)
I N g-y.)
R

N
-
i
[an)

since the distribution of ﬂr in equation (A.2.6) is a beta
of the second Xind and has a constant of proportionality
_1( r"l
Ty Ly )

FProm equation (A.2.7) ve can see that the multivariate
generalized beta distribution has the convenient property of

reproduction of form: any subset of the variates again form

a woultivariate generalized beta distribution. 1Indeed, the

univariate marginal distribution is given by




1wy
a, -] ,
. ( Vi \)1 (} L
(A.2.8) ply;) = o) AT Lo
. . L4 - . / P + ~ 4‘
1 T(GO)F(al) (l*_)\ t__Z_%M\‘?}O
N~y

thus reproducing the generalized beta foras.

Note that if Y is distributed as a standard uscia raadon

variate of the first kind, with parameters o and .,

r{etg) a-1 . »-1
T'(a)T{R) ‘. (1=y)

C’~+B) l" 1-3 G-y -1

TG T (1+( ﬂun
I~y

Hence, the standard beta distribution of the first kind 1is

]

(A.2.9) P(y)

the generalized beta distribution with parametcr: ., -, and
A= 1.,
Conditional distributions may be found in seovers . ways.

One may be found by observing that
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(y——-r | ( e o
* ko A l_yr) BELT 1 r l—yI’
Let yr = . T ; (yl\) : then Jyr = - 1‘;“—{—* ““‘I*_\'l‘ .
“1=1"1\0=v. “1=1 10 1=y
1=110T-y ATY
(r f Yy \: R
TR ST ST
T D S -
v, T ST
1 I
U =1 u\I-y /’
Thus 4
(_r
kK I 2.1: ‘l‘> %% -1
(A.2.11) ply, ;yl’ Ypo)) = - R R
H (\). ) (L oA I >
r 1=0 1
*(l-y J1=0"1
r
r
- ' 1:0711>7‘
IS g
i (JL_). (.,l:o.lll 1
*xxx 4 =1 4
[ Yr y ! ( N b
TR RY TR EW
\ l—yy“‘ Terp 0 * ok ok
o TRk y U< };1 <
r y . I
Y 1-0
l+'( T A, 1
l'}'r 4
LE B . . R
Hence, Yr |Vll,...,!r_l is distributed as a generalized
r-. xR
beta random variate with parameters Coe ety and - = 1,
i.e., a standard beta randos variate of the first kind.
IR B
Note that the moments of g, '11""'¥x—‘ are not dependent
on Yl, «-«s Y , and that the joint dastribution ot the
conditional random variates thus defined are constrained so
!
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that their sum 1is equal to one, as in the Dirichlet

distribution.

An alternative conditijonal distributicn may be found by

observing that

(f\-2-12> P(le‘]l:- .. :Yr_l )




* k
(A.2.13) ply, lypr---0¥p )

* K
The distribution of g
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— /yr — 1 .
1 r \l—yr, ! =0 "1
* l+ . y :
- {4{\
PR AR W S
1=1 l\l—er
At
i ,—_5__
- |
. r 1 Yr/ !
- /YN
l+_r 1 \ [ 1 II
i=1 1 l_yiJ
) < 1)
r\d-y j
* x v , N )
;then ayr = ,L__‘ ay and
1+ fj)_ [L)
1=1"1 -y,
. \ < H\ur—l
iy Qo Y
_ \73=0 "1 N
= T- Vo .r-1 W) R
Flay t=1=0 11}{i+ * % i=0"13
R
is thus a beta distribution of the

special case of the distribution

second kind. This is a

discussed in Section 3, the generalized P
* &k * % *

this Appendix A. Note that X = Yr

Yl ooeeer Yo

Section 3 as well.

Also

distribution,

* K

of

/(1—Y; ). given

this relationship 1is developed further

note that the moments of n

given Yl' cees Y ¢ are not dependent on Yl, ey Y;—l'

1 -

in
* K

r

but

il
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the odds

that the expected value of Yr/(1—1r) is linear in

ratios of the conditioning variates.
derived by

Another <conditional distribution wmay be
observing that
F(fr 3.\
(A.2.14) ply_| Y ) = 1=0 3
e Ypi¥yre--rtpr o for=1
I'(a )l(z _ u)
i=0"1
)1r< yf f
, 1-y./
g -
Yi Wi=p i

[ r i
l+Li=l)i &"Y ¥
.r=1
x  fLepfd ( Y a.lzoli
1=1 "1 l—yjb
A P a
- 1=0 1
1 I-l
(ur)T(“J:l“n
a_~1
y \*r .
o G? =
N Wy
r _ Y. 3¢
ST U SR L
N 1=1"1\1-y jj
f o Cr=1
T
R 1= . 1 \'-7] j
=]
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Hence, gr = g~|Y ""'Yr-l is distributed as a generalized

. . * * r-1
beta random variate with parameters . = , ,-- . ., , and

*

S NS FE
l+i£0 Ai kr%—j

Except for the result that the moments c¢f the
generalized beta distribution are not obtainable 1in closed
form, this «conditional distribution is the most useful of
the three, It relates directly to Yr, not to the odds ratio
of Y.. It is the same distributional form as the nul-
tivariate and marginal distributions. Finally, the moments
are likely to be dependent on Y0 «0-0 Y

*
through the parameter .

. - A@s odds ratios,

The fact that the moments are not obtainable in closed
form is a drawback to 1its usefulness. ©We may, however,

obtain approximations to the moments, using the companion
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distribution discussed in Section 3. The moments cf Loth

distributions are discussed further in Section 4.

Section 3. The Generalized P Distributicn

The generalized F distribution is a simple generaliza-

tion of the standard, Snedecor's F distribution. It may be

derived from an underlying gamma distribution like the stan-

dard F distribution 1is derived fronm the chi-square
distribution. Note that the chi-square distribution 1s a
srecial case of the gamma distribution. The generalized F

distribution may also be derived as a transformation of the
jeneralized beta distribution, in much the same way as the
standard F distribution may be derived as a transformation
from the standard beta distribution. In fact, 1t was

derived initially this way by this author.

Both derivations are presented felow, with the deriva-
tion from the gamma random variates first. As in the
previous section, the development is in terms of the mul-

tivariate distribution.

Let X, X, ..., X he distributed as independent gaoma

o

random variadates with parameters <, and -, 1=0, 1, ..., 1

respectively. The joint distributien of X, , X., ..., X i«




given by

8 N ..
o .1 u."l IR
1 1l 1

(A.3.l) p(xo, Xlr--~l:'\./ - l.:o‘-ﬁ

i
- X . | R
. i ) ! &
L L Ly 1 J

Let ZO = XO, and Zi = Xi/XO for i=1, ..., r. This gives the

i = .= *7 . 1 =
inverse transformaton XO ZO, and Xl ZO Zl for i=1, ...

r. The Jacobian for this transformation is given by

. l Zl Z2 (r
)
(A.3.2) J[X»2] = 0 Zq 0 ... 0 =y
' ' i |
0 0 0 2,

Thus, the joint distribution of 2 , 2 , ..., 2 is yiven by

5.0 . —1l -5z
~ 0 0 070
(A.3.3) p(ZO’Zl""’zr) N zO e
J
r - Il:ll - A'l’JZl‘
* ] 1 - ! .
i=107Ta.y 0% ‘ -7
1
- 19 L I
I<J; \} '101(1: ; I
_ i20%1/ "0 "Ti=0 (i i
X )
r N r +,r ) o "izoll
iLOA(di)t 0 "i=1"1 1]
* T . 1 + >
i=0 1770 TR
vhere .1< % P +,§ . , jrepresents the probability density
i=01" 70 1217}
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function of a gamma-distributed randonm variate with
r r
S st Loz ! i ibu-
parametersi:O i and L A Thus the marginal distribu
tion of Zl' e Zr is given by
- J
( f \‘ I ; Li,} Ll i :
_.u=0 'y 1=l 1 o 0z :
(A.3.4) p(zl,...,br) = — T y 1
r j: R
T N Y =0
i=0 L .
vhere LT /;b, as in Section 2. This is the multivariate

generalized F distribution.

Marginal distributions may be found by integration,

so ¥

that
r-1 r-1 ' -1
y&.\: T i, 1
. A\2=0 1 1=1 "1 1 - 0z,
(A.3.5) plzy,e.a,z, ) = SR
r-1 r,,. r-1 “i=0"1
o (w ) il+ i=1 i %1
1=0 1 L 9 1
and
0 -1
U +11) i lll :
(\-56) H(? ) = S vn S e e — , 0 A 4
k Cogh 0 e n et !
A 1 lJ
Thus, the nmultivariate generalized F distribution has the

convenient reproduction of distributional form in any subset

marginalization, the univariate

marginal

including

distributions.
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Note that the standard, Snedecor's F distributiocn is a
special case of this generalized P distribution. If 7 is
distributed as a standard ¥ randonm variate, its probability

density function may be written

1 1
: ) =k ko -1
L2 1
r/i Kk, +% Kk ) kK,/%., | g e
\ 2 2 "2 1V o) o,
(A.3.7) plz) = N SR '7lk +jtk 2.
BVISYRRT LY [l vk /K02 2717272

- —-

Thus, it is a generalized F random variate with parameters

%k %kz . and 1 = kl/kz .

l [ 4

Note also that the beta distribution of the second kind
is a special case of the generalized F distribution, with
A= 1. In addition, the multivariate F distribution and the
multivariate inverted beta distribution mentioned by Johnson
and Kotz (1972) are special cases of the multivariate
generalized F distribution in the same way as are the stan-
dard F distribution and the beta distribution of the second

kind of the univariate generalized F distribution.

The generalized P distribution may also be derived from
the generalized beta distribution as follows. Let Y be
distributed as a generalized beta random variate with
parameters a, 5 , and i Let 2 = Y/(1~-Y); then 2Z =

(1~Y7% .Y and
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P lat+3) Az 0<z,
(A.3.8) pl2) = =Ty T, L, . qats

vhich is the probability density functicn of a generalized F
random variate with parameters o, 7, and i . The sane
transformation applies in the multivariate case as may be

seen by comparing (A.2.5) and (A.3.4).

Conditional distributions may be found in ways similar

to those presented in Section 2. If we define

X Z
* k % r Y
(A.3.9) Zr = T ’
: z
E’+21=1 >‘1 1
* ok & i X * Kk %
we find that Z. is identical in distribution to T of

Section 2. Similarly, if we define

we find that 2z** is identical in distribution to Y;* )
r

*

Lastly, we may find may the distribution of 12 =

zrlzl,...,zr_] is that of a generalized P random variate

with parameter f:l .., and
A
* r
(A.3.11) 2 = T
. y
L ‘1“'1 11
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*

Note that 2 is a transformation of Y, of Section 2 such

x

r
* * *

that 2, = Y. /(1-Y ).

The moments of the gJgeneralized F distribution are
algebraically calculable, and are presented in the next secc-

tion.

Section 4. The Moments of the Distributions

In this section we discuss the moments of the
generalized beta distribution and of the generalized F
distribution. The moments of the latter are algebraically
calculable, whereas those of the former are not. We will
derive the algebraic forms of the moments for the
generalized F distribution first, and then derive
approximations for the moments of the generalized beta
distribution from them wusing Taylor's series expansion of
the transformation from the generalized F distribution to

the generalized beta distribution.

Let Z be distributed as a generalized F random variate

with parameters *, -, and * :
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The t-th moment about the origin is given by
a_at+t-1
El tl - M’ —/—‘—\——Z—'T‘ Jz
. A% = c,
(A.4.2) )T () [1+A2]a £
0
- t
(o) T (8) A
For t > g, the moments are infinite. Thus, the mean o
variance 03 . and skevness vy, of this distribution are given
by
= S S
(A.4.3) v = =gy o 8>1
02 = 0.((1"’8‘1) ) [ 8> 2
(B-1) (B-2)
. = a(6u(§-l)+9(tﬂ"2)+§) , 6> 3.
z (£=1) "~ (4-2) (¢=1) &

Other central moments may be found in a sisilar manner, by
expanding to a function of the moments about the origin and
using (A.4.2). These three are all that are used in the

approximations below.

Since the moments of the generalized beta distribution
are not algebraically calculable, we now present some
approximations. The approximations are based on the trans-
formations froa the generalized F distribution to the

generalized beta distribution and Taylor's series expansion
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of 1t.

Suppose we have a random variate Z that has d
generalized F distribution. Then the moments of a rundom
variate Y = ¢ (Z) may be found 1if the transtormation , (.)
has derivatives to all degrees at least in a interval about
some point used in the expansion, in this case the m®mean of

o .
Z, z

By Taylor's series expansion,

0

(A.4.4) Y

. 1 2 Lo ‘
(A.4.5) elyl = lu I+5 o' Lu du =+ &% (v, 0y,
Similarly,
(A.4.6) wivl = (o'(u 1% % v o (v de" iv S -
« 2. viy ¢ } i JZ t [ byl "ZJYZ g ' L i)
l L [N ] 2 L) i <
M UT PR (0 EURMEEE S TRELR PP
(A.4.7) E [(y~ElyD)] 2 (o (u 1)° +Lo 13 °
Z YZ 4 z z
L t j :
+ Tog (# (w, 1) r,—3
- . 2. 4
2(‘1" [“Z]) [+ [,,Zl ‘7

oLz] = alu, ]l % o Lo Jlzmu g o0t D0 e 1
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2 [ B} 2
- %(r;'[uzl) 4 luglog Vg
U I C R s
y 1 2Ill 4
T UM TS PR R PO [ A
et 1 (e Luy e, By
.1'.'[ L] e ')
— 5% [u,le [u,le by Jv,°
¢
In the above three equations,
_ A
(A.4.8) plz] = 12— ]
E
$lz) = (1 + z)?
p'r (2] = -2(1 + )73
,blll(z] - b(l + Z)"4

and the w@moments of the random variate Z are taken frosm

equations (A.4.3).
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Section 5. Conclusion

In this appendix, we have presented two pilobabilaty
distributions that have proven useful 1in utility modellinj.
Both multivariate and univariate foras have been developed.
The convenient property of reproduction of distributional
form has been demonstrated for marginal distriktuticn:.

Several conditional distributions have been derived.

It has been shown that these twc distributions, called
the generalized beta distribution and the generalized F
distribution, reduce to the standard beta and F
distributions, respectively, in special cases. It has also
been shown that the two generalized distributions have a
relationship similar to that between the standard beta and F
distributions. Finally, the moaments of the generalized F
distribution have been presented, and approximations for the
first three central wmoments of the generalized beta

distribution have been derived.
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Section 1. Introduction

In this appendix, we present the derivatives of the
three probability distributions used in this paper to model
multiattribute wutility functions. Thse derivatives are
necessary for the non-linear least-squares algorithm used to
estimate the parameters of the model selected. The models
that are available are the cumulative distribution functions
of the multivariate normal, the Dirichlet, and the wmul-
tivariate jeneralized beta distributions. Since only the
univariate conditional distributions are required for the
estimation procedure, the derivatives presented here are of
the relevant cumulative univariate conditional distribution

tunctions.

Because the derivatives are very complex, and because
we dre implementing three models of utilities 1n three
metrics, the derivatives are presented in pieces. In Sec-
tion 2, we present the derivatives of the obpjective func-
tion, that wvhich we strive to minimize, vith respect to an

arbitrary estimate of the indifference probability. As  we
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are implementing three metrics 1in the @model estimation
phase, the derivatives of these transformations are relevant
as well. Thus, the derivatives of the <cbjective function
are presented for each of the three  metric: the
indifference probability metric, the logodds metric, and the
arcsine-square-root metric. The estimate of the
indifference ©probability is a function of the conditional
utility function. The derivatives of the estimate of the
indifference probability with respect to an arbitrary

utility function is also presented here.

The conditional utility functions are modelled by three
cumulative probability distribution functions: the normal,
the beta, and the generalized beta. In Sections 3, 4, and
5, the derivatives of the utility functicn with respect to
its parameters are presented for the three models, respec-
tively. Each section 1s divided into two parts: the first
part gives the derivatives of the utility function with
respect to the conditional parameters; and the se¢cond ©part
gives the derivatives of the conditicnal parameters with
respect to the unconditional parameters (the parameters of
the m®multivariate distribution that is the model of the mul-

tiattribute utility function).
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Section 2. Estimation Metric Derivatives
Indifference Probability Metric:
Foo(p) = 5, (pioy - Piay)
1 1)k U1k 1jk
:‘F(.) _ s [ ..{) ) .;) \\
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Arcsine Square Root Metric:
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Assuming a two-attribute problem, we may simplity these cguations.

Suppose that the parameter vector is ' = (i ey )0 0 00

where ) and ., 4re means, oy, and v,, are variances, and

s the covariance. Then
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Section 4. Standard Beta Distribution
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Section 5. Generalized Beta Distribution
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